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1.0 INTRODUCTION

This research report documents the implementation of a nonmotorized traffic counts program in
Bend, Oregon as a part of a partnership between Oregon Department of Transportation and Bend
Metropolitan Planning Organization. ODOT’s research staff partnered with Bend MPO staff to
devise data collection protocols for nonmotorized traffic data collection followed by three years
of data collection. In addition to collected traffic counts data, this research developed a high
quality fully attributed bicycle network dataset used for determine count locations but more
importantly used in data fusion modeling and crash analysis.

The relevant content of the report is broken into 11 chapters covering every element of the work
performed in this research. Chapters 2 through 4 cover core components of the data collection
and processing phase of the research. Chapters through 5 through 8 document daily traffic count
imputation methods and data fusion techniques developed for this research. Finally, chapters 9
through 13 report on the crash analysis using the counts based travel activity estimation.

This work will ideally paint a complete picture for why nonmotorized traffic count and network
data are important data elements for public agencies to collect as they can be used to highlight
the disparate risk faced by nonmotorized users of the transportation system. Raw frequencies of
nonmotorized crash injuries tell only a small part of the story and only when these injuries are
normalized using estimated exposure measures is the true state of the nonmotorized system
revealed. When the crash injury risk for nonmotorized users are orders of magnitude higher than
motorized traffic public agencies will continue to convince more than the most dedicated or
vulnerable people to use the transportation system. The reality of the disparate risk makes
meeting safety, air quality, livability, and climate goals unlikely and should be a key component
of communication strategies for why projects to improve safety for nonmotorists are so
important.

1.1 DATA COLLECTION AND PROCESSING INTRODCUTION

Chapters report 2 through 7 document the following tasks of the SPR 813 adopted work plan
including:

e Task 1: Data Collection Strategy

e Task 2: Data Collection and Compilation

e Task 3: Data Processing
These tasks have been completed though data collection is ongoing and will continue after the
completion of this research project by local agency staff. These tasks are fundamental building

blocks for the latter analysis tasks but should be helpful on their own for practitioners looking for
guidance on these elements of nonmotorized data collection programs.



This research project is being executed in conjunction with agency staff from the Bend
Metropolitan Planning Organization (MPO) and has relied on those staff and their contractor for
much of the data development and collection. This arrangement represents a novel approach to
conducting a project for the ODOT Research Program. Benefits from this arrangement include
additional funding and staff resource from the Bend MPO for elements of the project which
allow the ODOT research funded effort to do more work with less direct funding. A second
major benefit of this arrangement is having a clear line to implementation since the Bend MPO is
currently working on major planning efforts including a Transportation System Plan and a
Transportation Safety Action Plan. This uncommon arrangement is not without its limitations
however since Bend MPO began some of the associated work before the beginning of this
research project some efforts are underway and so the research project has less ability to make
changes. These limitations are not deal breakers however and the current state of the project is
yielding significant benefits for advancing nonmotorized count programs and related analyses in
the state of Oregon

The Oregon Department of Transportation’s recently released Bicycle and Pedestrian Mode Plan
recognized the lack of data in non-motorized transportation planning. Recent bicycle and
pedestrian safety research completed by ODOT’s Research Section found it difficult to interpret
final results for many elements of their efforts due to a lack of traffic counts for these modes.
The recently published report SPR 778 Safety Effectiveness of Pedestrian Crossing
Enhancements found that “the estimation of the safety effectiveness of pedestrian treatments was
challenging due to... the general lack of reliable pedestrian counts”. Another recently published
ODOT Research Report SPR 779 Risk Factors for Pedestrian and Bicycle Crashes concluded
that, “The identification of risk factors and the magnitude of their influence on the likelihood of
future crashes were significantly constrained by limited roadway information.

1.2 STUDY AREA DETAILS

The Bend MPO is located near the center of the state and comprises a population of roughly
94,500 people as of 2017 according to U.S. Census figures. The MPO area is bisected by two
main highways, highway 97 and highway 20 which are access controlled in many places. The
region has 50.5 miles of off-street bicycle and pedestrian path as well as over 120 miles of on-
street bike lanes. Figure 1.1 below shows the Federal Urbanized Boundary (FAUB) which
coincides with the MPO boundary and constitutes this research projects study area. The map
also shows the location of bicycle facilities across the transportation network. Table 1.1 below
summarizes the number of miles of bicycle facilities by federal functional classification.

Table 1.1: Summary of Study Area Travel Network

Functional Classification | No Bicycle Facility | Bike Lane | Off-street path | Total
Local 463.1 3.4 50.5 517
Minor Collector 2.8 1.1 - 3.9
Major Collector 17.8 31.2 - 49
Minor Arterial 5.8 54.9 - 60.7
Other Principle Arterial | 4.2 38.3 - 42.5
Total 493.7 128.9 50.5 673.1
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Figure 1.1: Study area boundary with bicycle facilities

The city and MPO are currently going through a Transportation System Plan (TSP) update with
some focus developing a project list of bicycle and pedestrian improvements. The aim of these
planning efforts is in part to increase the number of people who walk and bicycle for travel
purposes. In order to achieve those goals additional information on nonmotorized travel
behavior is needed for the area.

1.3 RESEARCH OBJECTIVES

This research seeks to fill gaps in key measures of performance for walking and bicycling by
furthering methods for estimating total activity for these modes using traffic counts. These
measures of activity can fill basic metrics of performance across the system and help monitor
changes over time including those occurring in response to system upgrades.

In addition to fundamental measures of travel activity for people who walk and bicycle, this
research would seek to analyze safety outcomes for these modes by utilizing the activity
measures in crash rate development. Crash rates allow engineers, planners and other practioners
better metrics for understanding facilities and street configurations with higher risk, and help
deliver a key performance measure of safety outcomes.






2.0 DATA COLLECTION STRATEGY

This section describes the data collection strategy employed by this research effort and executed
in conjunction with Bend MPO staff and the ongoing data collection program housed with that
agency. Since the Bend MPO staff had begun data collection before the start of this research
project it was necessary to adapt the data collection strategy to some of the work already
underway. Some of the initial data collection elements including equipment purchases were
funded in part by Oregon Department of Transportation grants through the Transportation
Records Coordinating Committee (TRCC). Overall, this collection of efforts represents a novel
partnership between the state DOT and MPO in Oregon and can serve as a model for initiating
future non-motorized traffic count programs.

2.1 EXISTING AND FUTURE BEND MPO COUNT PROGRAM GOALS
AND PRIORITIES

2.1.1 Existing Count Program Priorities

A plan was developed and adopted before the start of this research effort and guided the
formation of the traffic count program including where data would be collected (KA 2016).
Before the start of this count program no systemic nonmotorized traffic data collection was being
performed though vehicle counts are collected for Highway Performance Monitoring System
(HPMS) purposes by ODOT. This Bend MPO traffic count plan lays out five key needs the data
collection plan would satisfy including:

e Monitor use and trends

e Measure project success

e Plan for the future

e Prioritize maintenance activities and operations

e Improve safety analysis.
With these uses in mind the locations selected for data collection included streets that existed at
traffic bottlenecks like bridges and underpasses as well as locations with planned infrastructure

improvements.

2.1.2 Count Program Priorities Going Forward

In addition to current priorities count data collection should help inform higher level analyses
including modeling of total nonmotorized traffic activity. A primary feature of this research will
be to offer additional information on data collection strategies for that purpose. Future steps in
this research project will utilize nonmotorized counts in a direct demand model which seeks to



estimate total bicycle and pedestrian travel activity across the transportation network. The direct
demand approach uses a statistical model where traffic counts are a function of a number of
inputs including the type of roadway, the presence of a bicycle facility, and the accessibility to
jobs and employment as well as some connectivity measures.

The use of counts data for this purpose was not originally envisioned for the Bend MPO count
program but can support it nonetheless. Below is a map of the current distribution of traffic
count locations and one measure of access to jobs. The direct demand model will use the
observed relationships at these sites and the underlying access measure to forecast travel activity
to the rest of the street network where no counts have been collected.

Future priorities for traffic count data collection would aim to collect enough count observations
I where other attributes, like accessibility, vary to a degree that supports strong statistical
strength. In estimated models. For instance in the below figure, the counts seem reasonably
distributed across the region where access to jobs varies, as opposed to the counts being
concentrated in the high access core of the downtown. This should help make the direct demand
models more reliable. In future interim reports the direct demand model method will be
discussed at length with a lengthy examination of past approaches, including one analysis
completed by the ODOT Research Program where the method was applied in the Central Lane
MPO (ODOT 2018).
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3.0 DATA COLLECTION AND COMPILATION

This section describes the equipment, procedures, and data processing protocols established in
the Bend MPO for collecting and storing traffic counts. The count program uses a combination
of permanent and mobile counts that utilize various technologies including inductive loops,
infrared, tubes, and pressure sensors. Paid contract staff are utilized to collect data using mobile
counting equipment and a procedure was constructed that uses a cloud based spreadsheet to
record the deployment and pick up dates and times for each device deployed. Traffic data is sent
via cell phone connection from the counting device to a cloud based data repository and later
combined with deployment information to process the data and combine with spatial attributes
for a final usable format. This process was designed to reduce the potential for human error and
also reduces data handling which should save staff time and associated costs.

3.1 NONMOTORIZED TRAFFIC COUNTING EQUIPMENT

This research and the developing data collection program utilize multiple types of data collection
devices and are summarized below. These devices collect vehicle, bicycle or pedestrian traffic
though some collect both without distinguishing between the user types. These counts are
termed ‘users’ and denote the aggregation of both bicycle and pedestrian users for the purposes
of this report. The following describes the equipment used in the study area’s count program
with deployment examples. Additionally, discussion of the likely inaccuracy of the devices is
presented along with the results of validation tests performed on some of the devices in the study
area.

3.1.1 Inductive Loop

Inductive loops detectors use induced current detection system that detects when metal objects
cross over the in-ground loop or wire permanently installed in the ground. Bicycle traffic count
data are recorded with these devices but does not have the capability of recording pedestrian
traffic. Inductive loop hardware made by Eco-Counter© have been found to be accurate with as
little as 0.4% error when counting in off-street conditions (Munro 2015) and up to 5.0%
(Norback 2011) in on-street conditions. The inductive loop hardware for this research has all
been manufactured by Eco Counter and is installed in both an off-street and on-street setting.
When the loops are collecting in an on-street setting they have been placed in the bike lane to
minimize issues where the loops count vehicles as bikes. Figure 3.1 below shows an installation
of an inductive loop detector in an off-street setting at Franklin Avenue where no vehicle traffic
can access the loops while Figure 3.2 shows the installation of the inductive loops in a bike lane
on Galveston Avenue.



Figure 3.1: Separated inductive loop detector at Franklin Avenue in Bend MPO

Figure 3.2: On-street inductive loop detector at Galveston Ave. in Bend MPO

In addition to counting bicycles, inductive loops that count vehicles are also present in the study
region.



3.1.2 SLABs

The SLAB detector uses pressure to detect the presence of both pedestrians and people riding
bicycles and does not distinguish between users. The picture below shows the installation of the
SLAB system on Colorado Avenue in the study area. No published validation studies could be
found for this device type but a short validation evaluation was performed and is described in
Table 3.1 and were shown to be relatively accurate.

Figure 3.3: SLAB detector at Colorado Avenue in Bend MPO

3.1.3 Passive Infrared

Passive infrared detector devices detect uses of a facility by measuring changes in ambient
temperature of users compared to background radiation (heat) as the user moves through the
detection zone. This study includes data from two vendors of passive IR devices including
TRAFX and Eco Counter. The figure below shows a permanently installed IR Eco Counter
device installed in the study area.



......
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Figure 3.4: IR detector at Galveston Avenue in Bend MPO

The TRAFX trail counter is used by the Bend Parks and Recreation Department to collect users
on trails and off-street paths in parks within Bend. The devices collect both pedestrians and
bicycle users but does not distinguish between the two user types. Similarly, the Eco Counter
PYRO infrared device does not distinguish between bicycle and pedestrian users but does offer
an integrated product that pairs with either an inductive loop for permanent count sites or
pneumatic tubes for mobile counting devices. Minnesota DOT (2015) performed validation
evaluations of Eco Counters integrated bicycle and pedestrian counting devices and found the IR
component was within 10% of the observed counts. The difference in this evaluation was an
under count most likely due to the inability of the device to detect all pedestrians in a group,
referred to as occlusion. The MnDOT report recommends developing correction factors.
NCHRP Project 797 (Ryus, et al, 2014) tested two brands of passive IR sensors finding that the
accuracy was ranges -3.1% and -16.7% for each product though did not describe which products
were tested. Validation tests for the study area equipment are presented below and compare well
with previous results.

3.1.4 Pneumatic tubes

Pneumatic tube counters detect bicycles using sensors that measure the pressure change in the
tubes by an instrument in the recording device. These device types have been in practice for
many decades for vehicle counting and are now being deployed for bicycle counting. This
research relies on Eco Counter’s pneumatic tube counters for all of the mobile site data
collection. The Eco Counter pneumatic tube was tested by MNDOT and found to have error of
1.6% in an off-street setting (MNDOT 2015). Oregon Department of Transportation (ODOT)
tested the Eco Counter tube counter using both bicycle only tubes and standard roadway tubes

10



finding the devise counted bicycle traffic with a reported 1.7% mean absolute percent error
(MAPE).

Eco Counter also produces a product that combines the pneumatic tube device with an IR device
in order to count both bicycle and pedestrian traffic. The hardware does the subtraction of
bicycle users from the total user counts in order to calculate the pedestrian traffic at the location.
These Eco Counter Multi units are also deployed in the study area and shown in the figure
below.

Figure 3.5: IR and pneumatic detector combo device at Greenwood undercrossing in Bend
MPO

3.1.5 Summary of Device Types and Deployment Locations

The map below shows the spatial distribution of the count locations and also details the device
types and collection method with details views of the downtown and south east sections of town.
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Figure 3.6: Count locations by device type and collection type

Table 3.1 below summarizes the number of locations by device type, collection type, user type
and whether the traffic data is collected from a permanent count location or from a mobile device
that can be moved to alternative locations. This table shows there are five types of devices being
used including the Eco Counter Multi which collects bicycle, pedestrian, and vehicle counts data
using tubes and IR in a combination system. There are also locations that use just an Eco
Counter IR or Traffix device to collect traffic data for multiple user types. Where bicycle and
pedestrian counts are collected with these devices a tube device is deployed as well in order to
separate out the bicycle users form the pedestrians. The table also shows that loop devices as
well as slabs are used in permanent locations. Total there are 195 device deployments in either a
permanent or mobile basis. This does not mean that there are 195 locations being counted
however, since multiple devices are needed at certain locations to collect all the traffic moving
along the roadway. This is explained in more detail in section 3.3.1.
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Table 3.1: Summary of Traffic Count Device, Collection, User Type

Device Type Collection Type User Type # Locations
Eco Counter Multi (IR and Mobile Bicycle 12
Tube)
Eco Counter Multi (IR and Mobile Bicycle/Ped 56
Tube)
Eco Counter Multi (IR and Mobile Bicycle/Vehicle 9
Tube)
Eco Counter Multi (IR and Mobile User 33
Tube)
Eco Counter IR Permanent Bicycle 2
Eco Counter IR Permanent Pedestrian 2
Eco Counter IR Permanent User 8
Eco Counter Loop Permanent Bicycle 12
Eco Counter Loop Permanent Pedestrian 2
Eco Counter Loop Permanent Vehicle 10
Eco Counter Slab Permanent Pedestrian 2
Eco Counter Slab Permanent User 2
Eco Counter Tube (Vehicle Mobile Bicycle/Vehicle 43
&/or Bike)
Traffix Counter (Parks) Mobile User 1
Traffix Counter (Parks) Permanent User 1

3.2 EQUIPMENT VALIDATION AND ACCURACY

In the sections above published validation evaluations were summarized for each device type
along with their description. It would be expected that the equipment used in this research and
supporting traffic counts program would function similarly. To be sure and to certify that
permanent sites were constructed properly, limited validation tests were also performed for select
locations. The table below summarizes the accuracy for four sites where validation evaluations
were performed. The results show that accuracy for of the devices work well enough for
Newport Bridge, Colorado Bridge and Galveston Bridge locations with minimum error of 0.0%
up to 21.4% error but that error for the Franklin Underpass site were considerable with 533% for
pedestrian traffic. These locations also collect vehicle counts and were shown to be relatively
accurate with the Colorado Bridge location being nearly perfectly accurate while the Galveston
location revealing 7.6% error. The Franklin Underpass location did not have directly
comparable data since the counter was not online at the time of the observed data collection.
However, a comparison of a similar time period reveals reasonable similarity in traffic counts.
For this location and the bicycle counts and vehicle counts will be evaluated again to better
understand how well the devices are performing.
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Table 3.2: Validation Evaluation of Bicycle and Pedestrian Traffic Counters in Study Area

Location

Equipment
Description

Data
Collection
Date/Time

North Sidewalk

South Sidewalk

Bikes in Road

Vehicles in Road

Mode

Observe
d

Eco

% Diff.

Mode

Observe
d

%
Diff.

Eco

Obse
rved

Eco

% Diff.

Observed

Eco

% Diff.

Newport
Bridge

Loops in
roadways,
loops in bike
lane, Eco
Multi on
sidewalk

5.16.2017
2-6 PM

Ped/bikes

35

31

-11.4%

Ped/bikes

56

42

25.0%

27

26

-3.7%

Colorado
Bridge

Loops in
roadways,
loops in bike
lane, slabs
on sidewalk

5.16.2017
12-4 PM

Peds

-14.3%

11

10

-9.1%

5268

5266

0.0%

Franklin
Underpass

Loops in
roadways,
loops on
edge of
roadway
(bikes), Eco
Multi and
loops on
sidewalk

5.16.2017
12-4 PM

Peds

37

39

5.4%

Peds

39

38 |-2.6%

38

533.3%

3785

4570

20.74%

Bikes

23

35.3%

Bikes

23

34 47.8%

Galveston

Loops in
roadways,
loops in bike
lane, Eco
Multi on

5.16.2017
12-4 PM

sidewalk*

Ped/bikes

32

0.0%

Ped/bikes

(9]

0.0%

22

-21.4%

4170

4486

7.6%
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3.3 RAFFIC DATA COLLECTION

Traffic data is collected in two methods depending on whether the device is permanently
installed equipment or mobile and able to be moved around the study area to collect at multiple
locations. All of the Eco Counter devices transmit their data via wireless cell phone connection
where the data is stored in a cloud based data repository available through a web portal or
application programming interface (API). The mobile traffic counting devices are deployed
using paid contract staff with details on the deployment maintained in a Google spreadsheet.
The traffic data and the deployment information are combined in a custom R based software
program that processes, cleans and stores the data for use by agency and research staff. The
below section describes these processed in more detail.

3.3.1 Location and Site Setup

Counting bicycle and pedestrian traffic is more complicated than collecting vehicle counts. The
expected zone of travel for vehicles is more certain, with vehicles traversing the roadway in a
predicable fashion on a limited area of the right-of-way. For that reason bicycle and pedestrian
traffic cannot be collected in locations without specific conditions.

Devices that use IR cannot face the device towards vehicle traffic where it may erroneously
count a moving vehicle as a user. The same is true for pointing the IR devices towards parking
lots where the warmth from the engine of a parked vehicle may also register as a pedestrian. The
pneumatic tube counters that collect bicycle traffic data require are only able to accurately collect
data on roads with widths of 30 feet or less which makes the deployment of multiple devices at a
single location necessary. To count the total bicycle throughput at a given location, it’s often
necessary to collect traffic counts on the sidewalk and in the roadway which includes a bicycle
facility like a bike lane. In order to do both sides where the roadway is greater than 30 feet in
width, it’s common to deploy up to four devices at a single location.

In order to fully account for all traffic on a travel network link the seemingly more complicated
approach described above was necessary. There was not any published approach to managing
bicycle and pedestrian traffic counts in the Traffic Monitoring Guide (2013) and so a system was
devised and is presented below. It balances the inherent complications of collecting these data
with an eye on simplicity for users that will be required to operate the data collection program in
the future.

Traffic count locations are composed of sub locations where various modes of travel are
collected for available directions of movement. The figure below attempts to describe a potential
setup where bicycle, pedestrian, and vehicle traffic are all being collected simultaneously. In the
example below the location (Location Id 001) has six sub locations collecting data using two
loops, two IR, and two pneumatic tube devices. The two IR devices collect users (both people
on bike and walking) that use the sidewalk while the two embedded loops collect bicycle traffic.
These data are combined and the pedestrian traffic is calculated by removing the bicycle users
from the total users collected by the IR device. Roadway bicycle and vehicle traffic is collected
using the two tube counters.
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Figure 3.7: Example count location setup

Data from all of the counting devices is streamed on a daily basis to an online data repository
(named Eco Visio) managed by the hardware vendor. These counts data can be retrieved
through a web based platform with some reporting functions including the ability to make charts
and compare locations. The counts data are also available through an application programming
interface (API) which can be accessed through various computer programing tools. This
research project has constructed a custom data processor built in the R open source statistical and
programming language which has API functionality. For permanent count locations the
processing is straight forward and only involves aggregating data by direction (for total link
flows) and mode. For locations where mobile equipment is used exclusively the processing is
more complex.

This process starts by first retrieving data retrieved from the online data repository through R
using the API call and an API key purchased from the vendor. The counts data are then
combined with information about a given device deployment so that the appropriate counts data
are retrieved for the right time for the respective location since the online data base is agnostic
about the location of the device. To clarify, a given mobile device might collect data in 10
locations throughout the year and those counts data are all stored in the online database without
the location information or anything related to the deployment. The deployment information has
details on when the location was at a given locations and for what time period so data can be
extracted and assigned to the appropriate location. The R software also employ information
stored in a geodatabase to help sort and process the locations properly in addition to adding
attributes like the facility type and link level attributes such as the functional classification of the
adjacent roadway. This process all happens automatically using the custom R software written
for this effort.
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Figure 3.8: Traffic data transmission and processing schematic

Figure 3.9 below shows an excerpt of the deployment information entered into Google Sheets by
the deployment contractors. The information includes the timestamp of the latest information
entered for that row, the Location Id and description, device name (vital for linking to the counts
data), the deployment date and time, the collection site type, either a sidewlak, roadway, or bike
lane, and the pickup date and time as well as any notes of interest to the deployment. Other
elements collected in the Google Sheets include the email address of the user submitting the
information and a picture of the deployment for verifying its setup.

9 Carnrngrts at Pickup (1ssues wih
Timestarp Location [0 1 Location Descripion (Street or ares) 2 Deploymaent Date 3 Deployment Time: 4 Type of Collection B Exuipment 1D 7 Pick up date B Pick up i equipment, collecton or site)

SB35 614 Brosterhaus wh bike and sidewal ot Brent g 1742 Combo (Sidewalk/Bikelane)  MULTIBA3 Bmg 160 post

BT 1405 1TA Butler Mt RAB Sidewalk east side of road AR 1030 Sideuialk MULTIR4G Biermy 10:30 None
SBTTO2ME ATA  Dutler market eb at wh approach Simg 1745 Combo (Sidewalk/Bikelang)  MULTIEED g 1440

BRO007 1406 ATB Butler M. Roadwiay lesing RAB NB BR01T 1030 Roadway TUBEEA? Brterm7 D30 verfy data for 14 - 415
OB TOR4B ATIE Butler market eb at wh anproach Sid/ama 1745 Combination (sheet and bike lar TUBESH GG 1440
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Figure 3.93: Example of Google Sheets deployment information

To expand the information available on the count locations a spatial database of characteristics
has been constructed that carries the location and sub locations attributes so that a linkage can be
made. Attributes such as the facility type, e.g. presence of a bike lane or off-street path, can then
be appended to the traffic counts data in order to perform later analyses. These data are all
stored in a geodatabase titles Bend Spatial Data.gdb.
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3.3.2 Data Schema

The data schema is that shows the various data elements from the three data sources are
presented below. In the appendix, a data dictionary has been provided for each element in the

data schema.

Eco
Counter
via API

Processed Count
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_Data.gdb

Raw Count Data Data
- Date Date
Ti - Time
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- Lme 3 Info
- Time Stamp Time Stamp
Counts - Counts
. EE—
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- bocation.ld Deployment Info
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- Pickup_Time
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- Email

- Edit_URL
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Figure 3.40: Data schema for traffic counts processing
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4.0 TRAFFIC COUNTS DATA PROCESSING

This section describes the data processing that occurs to clean and annualize the traffic counts
data. As of'the publication of this report data collection devices have gathered nearly 29,000
daily records from nearly 200 sub locations in the study region. In order to ensure high quality
data for further analyses, these data need to be checked and any data not fully representative of
traffic conditions should be removed to avoid entering bias into any results that employ these
data. However, doing manual review of this data by staff would be costly and take too much
staff time so what follows includes a description of a multi-stage process that looks for certain
data problems through an automated method. Data problems include consecutive zeros and
excessively high values and well as other outliers. All data anomalies are flagged and retained
so that any analyses using these data may still have access to suspect data if needed and to ensure
transparency for other data users.

Annualization of data is necessary when a full year of observed counts is not available. This
research uses two techniques including the traditional factors as well as a method proposed by
Roll and Proulx (2017) called the Seasonal Adjustment using Regression Method (SARM). The
traditional traffic factor method creates extrapolation factors where a full year of counts is
available and applies them to short term counts. The SARM approach utilizes the established
relationship between daily conditions such as weather and the daily traffic counts to estimate
traffic during days when no data was collected. Both of these methods are utilized and
compared.

4.1 FLAGGING SUSPECT DATA
The data cleaning algorithm looks for and created flags for the following error types:
e At least 3 days of consecutive zeros
e Rolling Mean Error (Outside specified error boundary)
e Excessively large value over 2,500 (For nonmotorized only)
e Manual Error Check Required
This process is explained using the flow chart below. The process is applied to each sub location
of data, as opposed to the parent location, so that errors can be found at the most disaggregate

level. This will allow utilization of other data from the related sub locations, provided counts
can be ‘filled in’ at the suspect sub location.
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Figure 4.1: Data error flagging process

4.1.1 Consecutive Zeros

As shown in Figure 4.1 above, the first check performed on the sub location data is to look for
daily records where the traffic counts were zero for three or more consecutive days. Based on
knowledge of some of the locations where these errors have occurred, these records are
presumed to be the result of equipment failure. These data are flagged with a tag indicating this
type of error.

4.1.2 Rolling Mean

The primary element of the data flagging process uses a simple approach of calculating the
rolling mean of the daily observations and calculating a confidence boundary where observed
values are compared with and if the observed daily values fall within the boundary the record is
not flagged with an error tag. If the observation falls outside the confidence boundary then it is
given an error flag. This process separates weekdays and weekends since those conditions alone
relate to significant variation at many locations.

4.1.3 Excessively High Values

For nonmotorized traffic counts, records are flagged when they exceed 2,500 counts per day.
This value was determined by manual inspection of these kinds of events and expert judgment
regarding the reasonableness of extreme high values for the study region. Some high values are
expected on holidays and special events that would induce nonmotorized travel such as a
marathon or organized bicycle ride. In order to avoid incorrectly flagging data collected on days
with an error flag, an additional process was created that looks across locations to determine days
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where high values are detected and creates a lookup table of dates. If a given day is flagged as
either excessively high, or outside the upper bounds of the confidence boundary but is on a day
where a special event may have occurred, the error flag is moved.

4.1.4 Manual Error Check

Lastly, if there is not sufficient data to calculate a rolling average, such as when there are three or
fewer days of data, a manual inspection of the data is carried out.

The results of these error checks and the application of flags are shown for a sub location below
in Figure 4.2. In this example only four daily counts fall outside the rolling mean confidence
boundary and two of those are potential special events. One of those days, the December 8 of
2018 date, was checked and in fact an event called the Holiday Lights Ride took place on that
date and likely led to the higher than expected value.
Daily Counts with Confidence Boundary
Larkspur trail at Bear Creek Rd

Location Id — 99391A
Coefficient of Variation: 0.657

Pedestrian
Off street path

|1 confidence Boundary

g

Potential_Special_Event
= No
#® Potential Special Event

Ermor_Code_Desc
* No Emor
4 Rolling Mean

Counts with Confidence Boundary

Figure 4.2: Example of rolling mean and potential special event flag
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4.2 RESULTS OF FLAGGING ALGORITHM

The results of applying these flags are shown below in table. For the bicycle user daily traffic
counts, the most common errors are consecutive zeros followed by observations falling outside
the rolling mean confidence boundary and then observations needing manual review and only
four observations with an excessive value flag (greater than 2,500 daily bicycles). A similar
outcomes is shown with for the pedestrian, user, and vehicle traffic with the greatest number of
error flags being assigned to observations with excessive zeros following by the rolling mean and
excessive values. For all of the nonmotorized traffic counts, about 75% had no errors detected
and are considered usable. Ofthe 24% with a detected error, 14% were due to the detection of
consecutive zeros which is associated with known equipment failures. The annualization process
will be able to interpolate these missing data when, as is the case for most of the permanent
count sites, sufficient data exists to estimate seasonal adjustment models using the SARM
approach.
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Table 4.1: Summary of Study Area Travel Network

User Type Error Code Observations Total % of Daily
Type with Error Observations Observations with
Error Flag
Bicycle Manual Error 130 10,605 1.0%
Check
Excessive Value |4 10,605 0.0%
Rolling Mean 1,069 10,605 10.0%
Consecutive 1,996 10,605 19.0%
Zeros
No Error 7,406 10,605 70.0%
Pedestrian Manual Error 60 5,513 1.0%
Check
Excessive Value | 201 5,513 4.0%
Rolling Mean 395 5,513 7.0%
Consecutive 646 5,513 12.0%
Zeros
No Error 4211 5,513 76.0%
User Manual Error 34 6,587 1.0%
Check
Excessive Value | 261 6,587 4.0%
Rolling Mean 420 6,587 6.0%
Consecutive 556 6,587 8.0%
Zeros
No Error 5,316 6,587 81.0%
Vehicle Manual Error 53 6,727 1.0%
Check
Rolling Mean 319 6,727 5.0%
Consecutive 1,745 6,727 26.0%
Zeros
No Error 4,610 6,727 69.0%
Total Manual Error 224 22,705 1.0%
Nonmotorized | Check
Excessive Value | 466 22,705 2.1%
Rolling Mean 1,884 22,705 8.3%
Consecutive 3,198 22,705 14.1%
Zeros
No Error 16,933 22,705 74.6%
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4.3 SPLITTING USER DATA INTO BICYCLE AND PEDESTRIAN
COUNTS

Traffic count hardware used in Bend collect pedestrian and bicycle separately in most instances,
however numerous sites have data where user counts are collected as well as bicycle and
pedestrian counts. In these instances, the ratio of bicycle and pedestrian counts from the bicycle
and pedestrian specific sensors are used and applied to the user counts in order to estimate
bicycle and pedestrian counts separately. This process is applied to counts data by weekend and
weekday separately, since the ratios appear to fluctuate depending on the day of the week, as
well as by month.

4.4 ESTIMATED ANNUAL TRAFFIC VOLUMES

Once data is retrieved, processed, and cleaned, it is most useful as an annual and average daily
value since most analyses including in crash and health, seek these comprehensive values. For
sub locations where data was collected intermittently, annual and annual average daily values
take into account seasonal differences and ensure the reported values are not too high if the
counts were collected in part of the year more favorable to nonmotorized traffic, or two low if
the data was collected during cold and rainy parts of the year. Data collected at permanent sites
that experienced equipment issues, the annualization process will fill in the gaps since the facility
was still operating as normal.

Methods for matching short term sites with permanent sites using land use characteristics were
tried but ultimately it was decided that a single factor would be used. Because the literature
indicates. Esawey (2014) demonstrated that using a single daily factor can minimize error
compared to the tradition day of week by month factors so this approach was applied for this
research.
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5.0 DATA IMPUTATION AND MODELING INTRODUCTION

Chapters 5 through 8 document work done for ODOT Research Project SPR 813 — Methods for
Estimating Nonmotorized Travel Activity. Specifically this report covers work required in Task
4 — Data Analysis and Modeling. This project seeks to develop nonmotorized traffic data
collection practices applicable across the state of Oregon by demonstrating data collection
protocols and processes in partnership with the Bend MPO. Following these sets of tasks, the
data is employed in estimating traffic activity across the network. This report will focus on the
implementation of machine learning tools for data imputation of daily traffic counts as well as
the use of machine learning in data fusion modeling.

Machine learning has quickly become a commonly used tool in a number of domains including
image and speech recognition, medical diagnosis, genetics, finance, and marketing. This form of
artificial intelligence allows data scientists to harvest more information from data and take full
advantage of larger datasets with sizable number of features and interaction effects among
features. The transportation domain has also been utilizing machine learning techniques but
most examples remain in the research side of the field with fewer examples found in practice.
Two applications of machine learning are explored in this report including its deployment in data
imputation of traffic counts data and data fusion modeling or direct demand modeling. The
report will first summarize literature related to imputation of traffic counts followed by a
literature review of data fusion or direct demand modeling. Both motorized and nonmotorized
research will be included in these reviews. Following the literature review, this report will
document the traffic count data imputation process developed, tested, and implemented using a
variety of analytic techniques. Lastly, this report will describe the data developed and deployed
in a data fusion models for vehicle, bicycle, and pedestrian traffic in the study region.
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6.0 TRAFFIC COUNT IMPUTATION AND DATA FUSION
MODELING LITERATURE REVIEW

The literature review will cover two topics including traffic counts data imputation as well as a
review of direct demand modeling and related data fusion modeling work.

6.1 MOTORIZED TRAFFIC COUNT IMPUTATION

In the past traffic count data imputation was relatively widespread with Albright (1991)
documenting at least 23 states using some procedure for imputation on their permanent counter
devices. Imputation is often necessary because of the common occurrence of missing data in
automatic traffic recorders or ITS data collection devices (Zhong et al 2005). Though
widespread, data imputation became a questionable practice as public agencies neglected to flag
data that was imputed from those that were actually observed leading to a small crisis of
confidence in the traffic counts data. In the early 1990s, the American Society for Testing and
Materials (ASTM) and the Association of State Highway Transportation Official (AASHTO)
adopted a Base Data Integrity principle that highlighted the significance of raw traffic
measurements being retained without modification or adjustment. Further, the principle of Truth
in Data directs highway agencies to clearly document any procedures used in any imputation
process. (ASTM International 2018) As ITS systems that collect volume data have expanded,
imputation methods are needed both to fill in missing data but also to predict traffic conditions
on a short term basis for operational needs. Missing data for these systems have been reported to
be as much as 15% (Chandra and Al-Deek 2004) and 14% (Ni et al 2005). Most of the recent
literature documents more statistically principled techniques for data imputation and seems to
shed the simplistic methods of the past except for base method comparisons. Some studies are
hard to compare with others because they report estimation results for hourly count estimation
while others look at monthly or annual estimation quantities.

Traffic count imputation uses three broad categories of methods including historical and factor
based, time series analysis, and machine learning. Historical or factor based methods use
historic observations of traffic at a given location to fill in missing data or develop factors using
traditional factoring approaches to estimate missing data. Moving average techniques use
varying levels of sophistication to employ larger sets of observations to inform imputed values
for missing data. Machine learning approaches may utilize a variety of algorithmic techniques
and will be the approach reviewed in most details below, followed by moving average
approaches with only cursory review of historic and factor based approaches.

In a survey of state DOT monitoring programs from 1990, it was found that at least seven states
used simplistic procedures of imputing missing traffic count records. For instance, it was found
that South Dakota DOT would use the previous three years of counts for the same period needed
for imputation to inform their missing values while Delaware DOT would look at the same
period during the previous and following month to inform their missing data estimate. (Albright
1990). Montana DOT would use historical approach and apply a change factor based on
reduction or growth observed in nearby sites. Some of these approaches were reviewed by
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Zhong et al. 2005 and found that for estimating hourly traffic counts, these simplistic historical
approached resulted in more error compared to a relatively more sophisticated moving average
approach. Turner and Park tested historical factor approaches on a number of scenarios where
data were missing at random and also not at random finding that results, even when missing up
to eight months of data, error was low at less than 5% (Turner and Park 2008).

A time series is a chronological series of data on a given variable, in this case traffic counts data
collected on a five minute, hourly, or daily basis. Time series data are analyzed hoping to find a
historical pattern for use in forecasting unknown, typically future, values. Time series modeling
is based on the assumption that previous trends offer information to predict future values (Box
and Jenkins, 1970). Numerous techniques exist for modeling univariate time series analysis such
as Holt-Winters, exponential smoothing, and Box-Jenkins. Exponential smoothing should not be
applied to data with seasonal variation and instead the Holt-Winters procedure should be applied.
Box-Jenkins procedure is a common tool for time series analysis and is more commonly referred
to as autoregressive integrated moving average (ARIMA) model using Box-Jenkins
methodology. Autoregressive and moving average components are considered in these models,
thus the name integrated model since the stationary model that is estimated to the differenced
data has to be summed or integrated to provide a model for the non-stationary data (Chatfield
1989). It has been noted that ARIMA (0, 2, 2) and Holt-Winters approaches are equivalent
(Castro-Neto et al. 2009). Sharma el al. (2004) used ARIMA and found it worked better for
predicting hourly volumes compared with time delay neural network, and factor approach.
(Sharma et al. 2004).

Some kind of moving average procedure has been used in traffic imputation since at least the
1990s where it was employed by London’s Department of Transportation (Redfern et al. 1993).
Zhong et al (2005) found the moving average approach employed by London DOT performed
better than the historic and factor based approaches of some state DOTs.

6.2 NONMOTORIZED TRAFFIC COUNT IMPUTATION

Esawey (2018a) tested a Monte Carlo Markov Chain (MCMC) multiple imputation model to
impute missing data including data missing completely at random (MCR) and data not missing at
random (NMR). The idea behind this approach is to take advantage of information from
historical information from the count station, patterns in data from neighboring stations, and
weather to develop an estimate of missing data. The tests found that in the MCR tests results of
were better than NMR but only tested missing data scenarios of up to four months. The work
also found the MCMC was significantly better than the baseline method of using monthly
factors. . Beitel et al (14) experimented with a process to automatically flag anomalous bicycle
traffic counts, remove them, and impute replacement observations using a DOY of year factor
from sites that exhibited similar day of factor year patterns. This research illustrated the
effectiveness of the day of year factoring approach for data imputation when traffic count sites
can be matched with other permanent sites. This approach however, requires enough data and
counters to match the traffic count site to a site with similar day-of-year factors which is not
always possible. The author’s use a correlation coefficient threshold of 0.75 to determine sites to
match and average the DOY for situations where multiple sites are matched. Additionally,
Beitel et al. (14) did not examine the ability of the method to impute pedestrian counts and how
often the ability to match any site with a set of sites to use for factors.

28



6.3 DATA FUSION AND DIRECT DEMAND MODEL LITERATURE
REVIEW

There are numerous methods for estimating traffic volumes with the most common methods
being a travel demand model, statistical model, geospatial analysis, machine learning, or image
processing. The focus of this review will center on statistical modeling and machine learning
techniques. This section of the literature review will focus first on motorized traffic and then be
followed by the literature found on nonmotorized traffic.

6.3.1 Motorized Traffic Volume Estimation

Numerous attempts to use statistical models to estimate traffic counts are present in the literature.
These models use the general functional form, aiming to find relationships between roadway
characteristics like number of lanes, functional classification, and access to jobs and people and
vehicle counts. Mohamad et al. (1998) used data in 40 of Indiana’s 92 counties to estimate a
multivariate regression model to predict AADT for vehicles. Validation of the models was done
using additionally collected data in 8 randomly selected counties. Results showed that prediction
error in the model ranged from 2% to 34% with a 17% mean percent difference.

Xiu et al. (1999) used data from the Florida DOT’s traffic count database including 89 count
stations across 40 counties to estimate a model relating roadway features, surrounding land use
and socio economic factors to the traffic counts. The final selected model produced estimates
that ranged from 1% absolute present different to 57% difference with an average error of 22.7
percent. Zhao and Chung (2001) used over 800 counts from Broward County, Florida to
estimate a multiple regression model employing roadway features like number of lanes and
accessibility measures. The authors also tried using spatially weighted regression techniques in
their analysis procedures. The range of error for the best model was between 0.3% and 155.6
percent with no mean error reported though the authors state that 73% of the comparisons
possessed 30% error or less. Tang et al. (2014) used a number techniques including neural
network machine learning Gaussian maximum likelihood (GML), and non-parametric
regression. The results of estimating near-future volumes on roadways showed that the GML
approach worked best though all techniques had mean error of 2% or less. Sekula et al. (2018)
tests multiple machine learning algorithms to estimate hourly traffic volumes on the Maryland
highway network. Machine learning techniques include a fully connected feed forward multi-
layer artificial neural network (ANN), linear regression, k-nearest neighbor, support vector
machines with linear kernel, and random forests. The ensemble ANN works best with 22%
median absolute percent error.

6.3.2 Nonmotorized Traffic Volume Estimation

Significant parts of the following literature review are derived from the previous report on
nonmotorized traffic modeling Bicycle Count Data: What is it good for? A Study of Bicycle
Travel in Central Lane Metropolitan Planning Organization (Roll, 2018) though has been
updated to reflect recent research. Facility demand models are an increasingly common method
for analyzing non-motorized travel but were tried as early as 1977 with Benham and Patel
(1977). These models use counts of people walking or people riding bicycles as dependent
variables and employ weather, built environment, sociodemographic and network characteristics
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as independent variables to estimate statistical models. These models are simpler than travel
demand models and do not include a behavior components or data from travel surveys. Some of
the research below, especially the more recent research, attempts to estimate network wide
demand while other research only estimates models to determine how each dependent variable
relates to the counts without ever applying the model to the rest of the study area.

Lindsey et al. (2007) uses mixed-mode (bicycle and pedestrian) counts collected by infrared
devices in Indianapolis, Indiana to correlate weather, temporal, sociodemographic and urban
form variables with non-motorized travel activity. The authors use a log-linear model
specification to determine the effect that these variables have on observed daily traffic volumes.
Findings suggest reasonable relationships between dependent and independent variables across
four model specifications with high explanatory power, with adjusted R? of 0.7966. This
research uses gross measures of socio-demographics and urban form, assigning Census tract
information where counts are collected to the count location. Counts for this research were
collected on off-street paths and were not applicable to on-street locations.

Hankey et al. (2012) use two-hour evening peak period (4:00 - 6:00 pm) counts of bicyclists and
pedestrians from 259 locations in Minneapolis, Minnesota to estimate models relating counts to
weather, built environment, socio-demographics, and infrastructure variables. Measures of
socio-demographics and some of the built environment variables’ areal unit is at the Census
block group level. The authors tried two model specifications, ordinary least squares (OLS) and
negative binomial regression to understand the relationship between the dependent and
independent variables concluding that due to the over dispersion of the count data the negative
binomial distribution is best. For the bicycle count models, Hankey et al. produce results using
the negative binomial regression technique with pseudo R? value of 0.476 with eight of the
independent variables not significant at the 0.05 level. The authors attempt some validation,
comparing estimated counts with observed counts though with no hold out and no discussion of
absolute error just a visual inspection. Additionally, the authors expand the two-hour counts up
to 12-hour counts using some locally derived factors which however substantiated, would likely
introduce some error into any application of these models to the entire network. This application
of the model to the entire network results in citywide estimates of 12-hour non-motorized traffic
for each link of the network.

Wang et al. (2014) estimate models relating weather and sociodemographic variables to mixed-
mode counts from six off-street counters. The authors compare the use of OLS and negative
binomial regression techniques, concluding that the latter is a better specification based on the
distribution of the counts data and resulting error from validation tests which was as low as
16.6% for the general model (pooled data from all six locations). The authors suggest that the
models could be used to estimate non-motorized volumes at locations where trails construction is
proposed. Hankey and Lindsey (2016) build on past research using additional mixed-mode
count data from the Minneapolis, Minnesota which include afternoon peak period (4:00 pm —
6:00 pm) counts from 954 locations for years 2007 through 2014. The authors use linear
regression models to relate weather, sociodemographic, and infrastructure to collected counts
data experimenting with models using varying numbers of independent variables hoping to find a
reduced form specification usable in areas with less available data. This research is the first to
try network density variables where the total length of certain network characteristics (e.g. on-
street bicycle facilities) are employed as independent variables with results yielding intuitive
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results in some but not all cases. For example in the statistically optimal model off-street trail
network meters within the vicinity of the bicycle count location are positively correlated with
more bicycle volume but local roads are negatively correlated. The authors perform robust
validation steps for their core and time-averaged models where they hold out (10%) a random
sample of their data, estimate and apply their model, and compare with the held out data and do
this process 100 times to assess predictive capability. Using R?as a performance metric the
authors report measures no higher than 0.55 suggesting the models work moderately well as
predictive models.

Fagant and Kockelman (2015) used 340 three-hour peak period counts collected in the Puget
Sound area of Washington to test how the features of the Highway Capacity Manual’s bicycle
level of service (BLOS) have an impact on bicycle traffic. The authors tested the impact of the
BLOS features by using a negative binomial and Poisson regression model finding that vehicle
volume is negatively correlated with bike volumes, as is the number of lanes, and higher speed
limits. Bike lane width was associated with an increase in bicycle volume as were many of the
control variables such as mean daily temperature and if the count was taken on an off-street path.

Wang et al. (2016) use mixed-mode counts from multiple places in the U.S. including
Minneapolis, Columbus, and the Central Ohio to test the transferability of the facility demand
approach across these areas. The authors estimate separate models for each city using AADT as
the dependent variable which was possible because counts data were collected from 17 (from all
areas) permanent counters collecting year round. Independent variables included
sociodemographic and built environment variables from U.S. Environmental Protection Agency
(EPA) 2010 Smart Location Database (SLD) in addition to accessibility measures from the
National Accessibility Observatory based at the University of Minnesota. The models used a
negative binomial specification but did not include any infrastructure variables. The resulting
models for each city had pseudo R? values of 0.64, 0.576, and 0.318 for Minneapolis, Columbus,
and Central Ohio region respectively. Validation tests were performed similar to Hankey and
Lindsey (2016) where some data is held out and later compared to estimated counts. Different
tests applying the models within each of the cities and also across cities were performed with
error of 27% 22% for Minneapolis and Columbus respectively. The cross city validation
resulted in considerably higher reported error suggesting transferability of models across cities
results in less much less reliable estimates. Since most studies are done using slightly different
methods and data it’s hard to directly compare the outcomes.

Proulx and Pozdnukhov (2017) used geographic weighted regression to fuse crowd sourced
bicycle data from Strava Metro and the local bicycle share system, as well as outputs from the
regional travel models to train a model on 536 directional bicycle counts at intersections. The
models were rated based on root mean squared deviation (RMSD with no measure of error
reported, finding that the models that used the travel model outputs which employed a more
sophisticated route choice bicycle that better accounted for actual bicyclist’s behavior worked
best. Additionally the authors found the use of bike share data decreased RMSD and that using a
Gaussian based weighting matrix for the geographically weighted regression outperformed the
ordinary least squares regression approach.

Hankey et al. (2017) developed a nonmotorized count program specifically to feed data into a
direct demand model. They performed a stratified random sample using functional
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classification and network centrality as features to guide the stratification. Collecting one week
of counts at 101 bicycle locations and 71 pedestrian locations the authors use a Monte Carlo hold
out validation technique (20% holdout) to determine the best model based on r-squared.
Covariate data included 199 different features including functional classification, bike facility
type, distance to population and commercial area as well as measures of centrality. The final
selected model included five variables for the bike model and 6 variables for the pedestrian
traffic model with r-squared values of 0.52 and 0.71 respectively. These final models are applied
to the entire network but no total bike or pedestrian miles traveled are reported.

Ermagun et al. (2018) used permanent count data from 32 sites from 14 urban areas in the U.S.
with an aim to further develop an off-street trail forecast tool. The authors developed
econometric models using generalized linear form with land use data from the Environmental
Protection Agency’s Smart Location Database (SLD) to understand how land use impacts
nonmotorized traffic activity. This research uses McFadden’s pseudo r-squared and mean
absolute percent error as performance metrics for assessing model quality. No discussion is
offered about the various models tried before concluding on model specifications that include
network density, a measure of higher education, accessibility, water density, lower education,
and worker age with different modes using different combinations of variables. The pseudo r-
squared measures for the bike, pedestrian and mixed-mode models were 0.63, 0.61, and 0.71
respectively. Mean absolute percent error was 65%, 85% and 46% for bike, pedestrian and
mixed mode models. The authors tested a correction factor by regressing error against select
SLD variables and were able to improve model result to 48% 58% and 39% mean absolute
percent error for the bike, pedestrian, and mixed mode models respectively. Griswold et al
(2019) estimated a direct demand model using pedestrian volumes collected at 1,270
intersections across the state. These pedestrian volume counts were collected on a short term
basis of 12 hours or less and we factored using permanent count stations matched to short term
sites based on surrounding land use. The authors developed a feature set of 75 variables and
concluded the use of just eight variables based on step-wise selection process. The results of the
model were rated based on r-squared and residual sum of squares with the final model r-squared
0f 0.714 and no reported value of RSS in the paper. The results of this research have been
applied to all 12,414 intersections on the CalTrans state system in order to be used in crash
analysis.

6.3.3 Machine Learning Literature Review and Overview

Machine learning has become a more common analytic approach when analyzing data sets
containing complex interactions among covariates or features and has been shown to compare
well with traditional methods (Diaz-Uriarte & Alvarez de Andres 2006; Heidema et al. 2006).
Many kinds of machine learning algorithms exist and include supervised learning methods where
a response variable is defined by the user as well as unsupervised where the algorithm
determines patterns of importance. Machine learning tasks are typical categorized as either
classification, where the model is learning to predict a binary or categorical variable, or a
regression problem where a continuous variable is being predicted. This review will focus
supervised learning algorithms for a regression problem (traffic counts) using tree based
ensemble methods including random forest and extreme gradient boost (XgBoost).
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Random forest algorithms work by drawing random samples of data from the input data set and
fit a single classification tree to each sample. Classification trees are constructed recursively by
selecting the next splitting variable by locally optimizing a criterion such as GINI gain (Strobl et
al 2008). Because of the random nature of the samples single classification trees can be unstable
but when multiple trees are combined into a forest or ensemble, prediction accuracy increases as
those predictions are averaged. Multiple studies have been done to demonstrate the accuracy of
these predictions across various fields (Bauer and Kohavi al; 1999; Breiman 1996; Dietterich
2000). Ensembles or forests help to smooth hard edges of decision trees because of random
selection, some features to enter the set of predictor variables that may otherwise be
outperformed other features. This characteristics of random forests may reveal important
interaction effects with other variables that would have otherwise been missed (Strobl et al.
2008). Gradient boosted decision trees have become increasingly popular machine learning
algorithms because of their speed and performance. Extreme gradient boosting (XgBoost) uses a
more regularized model formalization to control over-fitting but is still built on the gradient
boosting framework proposed by Freidman (2000). Boosting constructs the model in a stage-
wise process and then generalizes them by allowing optimization of a determined differentiable
loss function. Tree based and machine learning techniques with gradient boosting frameworks
will be the methods used in this research.

6.3.4 Feature/Variable Importance Overview

A diagnostic measure for machine learning algorithms used in this research include a measure of
variable importance. Because many audiences are not familiar with machine learning generally
variable importance deserves its own explanation and review below to better acquaint readers
with what information this measure can provide. The below section will discuss how variable
importance is calculated for random forest and XgBoost machine learning algorithms.

For this research the measure used for describing variable importance is limited to Gini impurity
and is essentially a measure of the number of times a feature is used to make node split for a
given tree in a given forest. In most calculations of feature importance using Gini impurity the
sum of the GINI decrease for every tree in the forest is aggregated each time that feature is
chosen as a splitting variable. This aggregate value is then divided by the number of trees in the
forest for an average. The scale of the final measure is not important but its comparison to other
features gives model users the relative importance of that variable compared to the others. This
research will document feature importance as a way to diagnose how the model is utilizing input
features.

6.3.5 Cross Validation Overview

This research utilizes statistical models and machine learning to solve analytic problems
important to meeting the research objectives. A key element of testing the predictive
performance of these algorithms is the use of cross-validation. Cross validation is the process of
dividing data into training and testing sets where the training set is used to develop a model
which is then applied to the training set. Since the observed values being predicted by the model
are available in the training set, a performance metric can be computed by comparing the
observed and estimated values. Common measures are percent error and root mean squared
error (RMSE), both of which are used in this research.
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Cross validation can be used to gauge the performance of any kind of model, whether a
traditional statistical model or a machine learning model. In machine learning, cross validation
is used to gauge model performance, as previously described, but also to train a model by
iteratively specifying a model, testing its performance, and then adjusting elements of the model
such as which variables are used to make splits in trees in the random forest algorithm. There
are many kinds of cross-validation but for this research we will use 10-fold, leave-one-out, and
exhaustive. Below are detailed descriptions of these techniques:

e 10-fold — In 10-fold cross-validation the data is partitioned into 10 equally sized
subsamples at random or using a stratified random selection. Models are then
estimated on nine of the 10 partitions holding one partition aside to test the model
application. The model is applied and then compared to the one partition that was
held out and the estimated values are compared with the observed and a measure of
error or model performance is computed. This is done until each of the 10 partitions
are held out of the model estimation.

e Leave-one-out — In leave-one-out cross validation each data point is used as a test set
and the model estimated on the remaining data then the model is applied to see how
well can estimate the data that was not used in the model training. This is done until
all the data points have been left out. A summary of the error, either mean or median,
is then computed and used to gauge the model performance.

e Exhaustive — Exhaustive cross validation tests all possible combinations of data
being divided into training and sample sets. A deeper explanation is provided in the
section below on traffic counts imputation and is deployed to tell which months the
imputation modeling process works best for by testing all possible combinations of
months being in the training and test set.
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7.0 TRAFFIC COUNTS IMPUTATION

It is not uncommon for a traffic count sensor to stop collecting data due to a variety of reasons
related to counting hardware or data transmission issues. These outages are usually for
continuous blocks of time but as noted in the ITS literature, can often times be intermittent as
well, with just a few days or hours missing. The existing data are still valuable and the missing
data can be imputed with confidence, though the uncertainty should be characterized. This
section describes the tests performed to understand the best imputation procedures to deploy for
bicycle, and pedestrian counts in the Bend, MPO study region. Using nonmotorized traffic
counts data from across Oregon where a full year of data are available, various machine learning
techniques are tested to see how well daily, monthly, and yearly volumes can be imputed. As a
baseline to compare the machine learning algorithms a negative binomial regression statistical
model will be estimated and applied as well.

7.1 IMPUTATION EXPERIMENTAL DESIGN

To test the efficacy of data imputation using machine learning the experimental approach will
reflect practical imputation needs using a not missing at random hold out of counts data. What
seems to be most common in the nonmotorized counts data for Oregon, are extended periods of
time when the traffic sensor is either not working or not transmitting data (and forever being

lost). Figure 7.1 below shows an example for a count location in Bend MPO study area where
119 days of day are missing from the traffic counts for 2018 for two separate periods.
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Figure 7.1: Period of missing data example
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These continuous periods of missing data will inform the experimental design of our imputation
tests but in order to simplify reporting on results whole months will be removed. In the
imputation tests, various months of counts will be imputed so that we can document the likely
error under different scenarios of missing data. Using full year of counts from traffic sensors
across Oregon, we can simulate these outages and understand well, the likely error under
different data outage circumstances. The work flow for the experiment is described in the Figure
7.2 below showing three examples of how the imputation procedure will be tested.
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Figure 7.2: Missing data experimental design

For instance in Test 1, we simulate a scenario when traffic counts were available for January and
those data are then used in the model training process and then applied to estimate February
through December (11 months) traffic counts. We then compare those estimated counts to the
actual counts and compute the absolute percent error (APE). APE is calculated using the
following equation:

g — |AAPTobs = AADT o5,
AADT .

(7-1)

In Test 2 both January and February to train the model and then estimate the remaining 10
months, compare and compute error. This is done for all possible combinations representing an
exhaustive cross-validation design. A summary of absolute percent error by median and 95
percentiles will be computed as performance measures. All possible monthly combinations will
be tested so that during the application of the final imputation procedure, confidence interval for
the likely error can be assigned. There are 4,096 possible combinations of months to use in the
test, all of which will be tested in this experiment.
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Multiple machine learning algorithms were tested including conditional inference, random forest,
and recursive partition. These algorithms were implemented in the R statistical computing
environment using the caret package (Kuhn, et al, 2020). For more discussion of these methods
please consult the literature review above. For baseline comparisons a negative binomial
statistical regression model is estimated and applied. Based on the success of using a negative
binomial regression model documented in Roll and Proulx (2017), where reliable annual
estimates were achieved with as little as six weeks of daily counts, the statistical model is likely
simpler to understand for some practioners as it uses more common statistical methods.

7.2 IMPUTATION EXPERIMENT DATA DESCRIPTION

Table 7.1 below summarizes the daily traffic counts data used in this imputation experiment.
Two years of data are used utilizing nearly 9,100 daily traffic count records from 23 unique
count locations throughout Oregon. Because complete annual datasets are hard to achieve, only
18 of 25 locations (combination of location and year) have a full year of data while the other
eight locations have at least 351 days, or 98 percent. All of the count locations in this research
are featured on multi-use paths. The mean values below show that the nonmotorized traffic
volumes are generally on the lower end with Bend exhibiting the lowest counts and Eugene with
the highest of the data used in this research.

Table 7.1: Imputation Experiment Data Summary

City User Type Summary Statistics
Mean Median Standard | Number of Daily
Deviation Sites Records
Bend Bicycle | 56.3 43 54.9 5 2167
Bend Pedestrian | 148 99 150 7 2907
Eugene Bicycle | 340 275 240 3 1095
Eugene Pedestrian | 594 281 576 2 729
Springfield | Bicycle 185 125 182 4 1460
Springfield | Pedestrian | 103 97 41.8 1 365
Total Bicycle 153 81 190 13 5087
Total Pedestrian | 225 105 328 10 4001

This research is utilizing supervised machine learning algorithms and regression models,

utilizing the documented relationships between weather, day of week, and lighting conditions, to
predict the traffic counts sunlight (Miranda-Moreno & Nosal 2011; Tin et al. 2012; Thomas et al
2012; Rose et al. 2011; Lewin 2011; Nosal and Miranda-Moreno 2012). Historical climate data
used as features in the machine learning and negative binomial regression approaches come from
the National Oceanic and Atmospheric Administration (NOAA) and are accessed using the rnoaa
library (Chamberlain 2019). Climate data stations for each city, typically the nearest airport, are
queried and assigned to the traffic count locations nearest the station. It was considered to use
PRISM data that interpolates weather conditions between stations using a gridded system,
potentially giving better localized weather conditions but this approach is not currently being
applied.
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7.3 IMPUTATION EXPERIMENT RESULTS

Using the experimental design described above results from the experiments will be shown
followed by a number of diagnostic summaries of the machine learning algorithms and negative
binomial regression model. Figure 7.3 below shows the 95" percentile APE for daily, monthly,
and annual aggregations, meaning that for 95 percent of the tests the APE was at or below the
indicated value. For example, the first column within the bicycle panel, indicates that for
estimating daily counts using the conditional inference machine learning algorithm, 95 percent of
the daily count estimates were 24.6 percent or less. The daily aggregation level shows the 95
percentile of the median error of the daily comparisons, meaning that for each hold out test, the
median APE of all the days in that test were used to calculate 95 percentile as opposed to just
using the APE in the monthly and annual summaries. Monthly aggregation directly compares
entire months or groups of months estimates with observed, while the annual aggregation
compares the entire year of estimates plus observed months, not in estimate, to an observed
annual count. For instance, in Test 1 from Figure 7.2, the experiment estimates counts from
February through December and the annual error measures the difference between the observed
annual amount and the estimated counts from February to December plus the observed counts
from January. This way we can show the overall annual error when we add imputed data for
missing data plus remaining observed data.

Imputation Results for
Machine Learning
All Locations
95th Percentile Error

Bicycle Pedestrian

481%
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b Imputation_Type
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o I Negative_Binomial
® | Random_Forest

5 20% Recursive_Partition
©

]

<15%

10%-

5%~

0%-
Daily APE Monthly APE Annual APE Daily APE Monthly APE Annual APE
Aggregation Level
Figure 7.3: Imputation results for all machine learning aAlgorithms — 95" percentile error
summary

Nevertheless, the Figure 7.3 shows the upper end of the possible error using each of the machine
learning approaches across all tests using all years of data. For the bicycle traffic counts
imputation, the random forest appear to work best with random forest demonstrating the lowest
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error for all of the bicycle tests with 22.5 %, 34.2% and 17.2% for daily, monthly, and annual
aggregations respectively. For the pedestrian traffic counts, the negative binomial regression
model works best, with 21%, 23.9%, and 13.2% for daily, monthly, and annual aggregations
respectively. For the bicycle counts, the random forest is significantly better than the negative
binomial model for each aggregation, and the other machine learning algorithms are next best,
most often the recursive partitioning algorithm. For pedestrian counts, the random forest and
negative binomial approaches are similar in error for daily and annual error while the negative
binomial outperforms the random forest significantly in the monthly aggregation.

The error shown in the figure above shows the worse outcomes, or at least the imputation
scenario with the most error 95% of the time, but imputation results can differ depending on
amount of data used in the model training and the particular days or months used in the training.
Generally, the more data used in the training, the better the imputation estimation and it
highlighted in Figure 7.4. This figure shows the 95" percentile error and the median error by
annual estimation for each of the scenarios of months used in training data. In the left panel the
bicycle counts tests are summarized and related error summaries are shown while the pedestrian
count tests are in the right panel.
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Figure 7.4: Imputation results for all machine learning algorithms — 95 percentile and
median error summary by months used to train model
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Table 7.2 below shows the results from the chart for the negative binomial and random forest
models (since they were consistently the best performing overall) in table format so readers can
examine the information in more detail. It should be noted that some results are not shown in the
chart since a small number of negative binomial model tests had such high error that the chart
was unreadable. For instance the 95" percentile error results for one month of data for the
negative binomial model was over 26,000 percent! Of the 442,152 tests done for the 21 count
locations, over five imputation techniques, across the 4,096 monthly holdout scenarios, 82
estimates for the annual aggregation APE was over 500% so this seems to be a rare outcome
overall. Also, all of these incredible outliers were from the negative binomial regression model
and usually resulted from training the model on a single month, usually December, but in some
cases, using two months, usually, some two month combination of January, November, and
December. It appears that even though the negative binomial regression model does pretty well
overall (Figure 7.3) it struggles when data little data informs the training data (i.e. one or two
months of winter data feeding the model).

Table 7.2: Imputation Experiment Results by Number of Months Used to Train Model

Number of Bicycle Pedestrian
Months Used Negative Random Forest Negative Random Forest
in Training Binomial Binomial
95th Media | 95th | Media | 95th | Media | 95th | Media
Pct. n Pct. n Pct. n Pct. n
1 26,288 | 38% 84% 34% 244% | 18% 68% 20%
%
2 131% 14% 53% 11% 53% 9% 40% 10%
3 50% 10% 34% 7% 28% 6% 27% 7%
4 35% 7% 23% 5% 19% 5% 20% 6%
5 28% 5% 18% 4% 14% 4% 17% 4%
6 22% 4% 15% 3% 11% 3% 14% 4%
7 18% 3% 12% 2% 9% 2% 12% 3%
8 15% 3% 10% 2% 7% 2% 10% 3%
9 12% 2% 8% 1% 6% 2% 8% 2%
10 9% 2% 6% 1% 4% 1% 6% 2%
11 6% 1% 4% 1% 3% 1% 4% 1%

Overall, in either of the models shown in Table 7.2, given at least nine months of training data or
more, the annual counts can be estimated within 8 percent in almost any combination of training
months. In 50% of training tests (median error) as little as three months of data can be used to
impute missing data and arrive within 7% or better of the actual annual total for the random
forest and 10% or better with the negative binomial regression model. These results should lend
significant confidence in either of these approaches for estimating annual total counts for bicycle
or pedestrian traffic volume.
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7.4 IMPUTATION EXPERIMENT DIAGNOSTICS

The above results are presented to demonstrate the prediction power of each of the imputation
procedures. However, it’s necessary to unpack some of the underlying modeling procedures to
understand more about each imputation procedure works. Information about the estimation
results from the negative binomial regression models will be shared and then a few diagnostic
elements from the machine learning algorithms will follow.

7.4.1 Negative Binomial Regression Model Diagnostics

As noted above, covariates for each of the regression model are selected based on their predictive
power using a 10-fold cross validation procedure. This process selects daily covariates most
useful in predicting daily nonmotorized traffic counts. This results in different covariates being
used in different models. Figure 7.5 below summarizes the variable used in each location for
both the bicycle and pedestrian models. Max daily temperature and the weekend variable are the
most common covariates used, followed by snow fall, daily precipitation and minutes of daylight
for both user types.

Variables Used in Negative Binomial Regression Model
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Figure 7.5: Variables used in negative binomial regression imputation procedures
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The model coefficients from the holdout experiment offer useful information as to why in
scenarios with fewer months used in the model training, predictions are poorer than in months
with more data. Figure 7.6 shows the standardized beta-coefficients of all 4,096 tests charted for
each of the variables used in the specification for a single location (Millrace Path) in order to
highlight how the coefficients converge as more data is used in the training of the model.
Assuming the coefficients in the tests with more data (Months Used equals 9-11 months) are
closer to the real values, it’s easy to see why the tests only one to three months perform so poorly
since their model coefficients are so much different.

Negative Binomial Coefficient Parameter Results for:
Millrace Path @ Booth Kelly

Bicycle

B
o)
-0.003- o« 2
ﬂa =
-0.006- ®
» - S
L ] "'I =
-0.009- %
L 3
* ” S S TN T o -——
o -—0.01- =r 7
= =
Y (7))
= -0.02- 3
[o) 5 Annual APE
@ =
£ -0.03- e 0.0%
© — 10.0%
G 0.004- ! 20.0%
o oo, o] e M 30.0%
= 0.002- . _ 40.0%
S '*%ﬁ".’-"*’“ 50.0%
L 0.000- - >
D -
o -0.002- -
O o
-0.004-
. 5 i
0.009- T 3 & =
s LR
o @]
o006 [+ ] [ ] T AAL 3
e ' <
| 'z L o
0.003 -
‘ o
0.000-

1 2 3 4 5 6 7 8 9 10 11
Months Used in Training Data

Figure 7.6: Example of negative binomial model coefficients perturbation
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7.4.2 Machine Learning Algorithm Diagnostics

Machine learning algorithms have fewer measures to help users understand how the model is
working but information about variable importance can be a helpful guide to understand how the
model is working. The variable importance measure for tree based learning algorithms
essentially measures the usefulness of each feature in the construction of the trees or more
simply the number of times a features is used to make split in a tree at a node. For illustrative
purposes, an example decision tree is presented below for a single location in the study area in
Figure 7.7. The tree shows how the recursive partitioning tree determines splitting criteria
including features and feature values. For example, starting at node one (denoted by the value at
the top of the node) where all 357 observations in this dataset are present (n = 357, mean value =
37), the data is split by the TMAX (max daily temperature) variable based on whether the counts
were taken on a day with less than 63 degrees (F) or more than 63 degrees. If the max daily
temperature is less than 63 degrees the decision tree moves left to node two (n = 176, mean value
= 20) where temperature is used to split the data further, this time at 53 degrees (node 5, n = 74,
mean value = 28). If the temperature is more than 53 degrees the decision tree uses another
feature, a dummy variable for weekday or weekend, to make a splitting decision. Ifthe counts
were taken on a weekend, the branch moves left (to node 10, n =26, mean = 18) or if the count
was on a weekday branch moves right (to node 11, n =48, mean = 33).

e ™
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Figure 7.7: Example decision tree

From this description it’s clear that TMAX (max daily temperature) and Is Weekday (dummy for
weekend or weekday) are important variables used for splitting data at nodes. These outcomes
can now be quantified in the chart below in Figure 7.8 showing the relative importance of each
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variable highlighting that max daily temperature is the most important variable in determining
daily traffic counts for bikes, followed by minutes of daylight, and weekday dummy variable,
precipitation (PRCP), and a dummy for if the count is on a federal holiday. Inches of snow on
the day of the count was not important, likely due to low number of days with snow and also the
impact of snow might be dealt with using the temperature and precipitation variables.

Example of Variable Importance for Imputation Problem

TMAX-

Daylight_Mins
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0.0 05 1.0 15
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Figure 7.8: Example of feature/variable importance for single recursive partition tree

Now that an explanation of the variable importance measures has been described, these measures
will be presented for the working models from the data imputation experiment. Because there
are models estimated for multiple locations, the Figure 7.9 summarizes these using relative
representations based on color. The variable importance summary is broken out by bicycle (top
panel) and pedestrian (bottom panel) traffic counts. This figure shows how max daily
temperature is important for both bicycle and pedestrian traffic for all sites, albeit less so for the
pedestrian Newport Avenue location. Daily precipitation and minutes of daylight are also
important variables for most location specific models.

Using variable importance we can check whether our models are working well by assessing
whether the decision tree splitting variables align with the documented research and theoretical
foundation. Based on the results below and what has previously been documented as daily
conditions affecting daily nonmotorized traffic counts, the models seem to be working as
expected.
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Count Location

7.

Scaled Variable Importance for Random Forest Algorithms
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Figure 7.9: Variable importance for random forest models by count location

S IMPUTATION EXPERIMENT DISCUSSION

Accuracy of the prediction is an important element when deciding on an imputation procedure
but it is not the only thing to consider. Ease of implementation and acceptance by practitioners
are other important considerations. The difference in the negative binomial statistical model and
random forest machine learning algorithm along these two elements will now be discussed along
with an examination of the accuracy results for daily, monthly and annual estimates.

The regression model uses weather, day of the week, and minutes of daylight as covariates to
predict the traffic counts for a missing day of data. It’s important to determine the best variables,
for instance, if snow fall should be used in a city with little snow fall, may not be obvious and so
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some testing needs to be done to determine which covariates to use in the regression
specification. Prior to the execution of the tests conducted in the experiments above, a k-fold
(k=10) cross validation procedure was performed to determine which of the possible daily
covariates were best at predicting daily counts in order to specify the final model used in the
experiments. This required some programming in R to properly set up and execute but was
generally straight forward. The algorithms for the machine learning algorithm on the other hand,
make the implementation of these imputation procedures a little simpler, doing the cross
validation internally (within the package functions) and the nature of machine learning means
model specification is not necessary in the traditional way. Computation time for the regression
model, even considering the cross validation for covariate selection, took just a few hours while
the machine learning test training took about four days to do all of the tests for each of the
different algorithms, even when parallel processing was utilized which cut each test’s run time
by about 60% when utilizing 7 processors at once on a four core system with eight 3.4 Ghz
setup. For testing accuracy like what was done in the experiment above, this is not much of an
issue though since the data is not needed in real time for operations or some similar function.
Both of these two approaches require some technical skills that might not be in high supply at
transportation agencies and so may be difficult to implement. This is likely why simplistic
historic and factoring methodologies persist. Factoring can work if the data exists but as will be
shown in the next section, oftentimes sensors fails and there is not a full year of data to use in the
development of daily factors so these statistical and machine learning methods offer a more
flexible, albeit more complicated, approach to traffic data imputation.

It should be noted that the imputation experiment results might overstate potential error when
actually deploying an algorithm since in practice. Since the experiment only looked at a single
year in isolation, if any given month was missing the pattern in that month was also gone but in
practice if a given month is missing from one year the likelihood is high that that month is
present for the preceding or following year. This would likely improve the machine learning
performance in terms of error.

7.6 IMPUTATION APPLICATION

With a tested approach documented above, this section will now summarize the application of
the imputation process for count sites in the Bend MPO study area. A description of the sites
and the missing data will be described, followed by the results produced by the imputation
procedure and a short discussion of the potential error in these annual estimates. The random
forest machine learning algorithm was selected due to its low error and ease of implementation.

7.6.1 Missing Data Description

Figure 7.10 below shows the number of days missing for the permanent count stations that had
data lost due to hardware issues or data filtered due to the error check process discussed in an
earlier section. Nearly 80% of the daily counts imputed in the imputation process were
consecutive zeroes likely due to equipment problems, with another 16% due to the values falling
outside the rolling mean error boundaries. The maximum number of days missing is 179 at
location 267B with the average number of days missing at 54 days and a median of 50 days.
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Figure 7.10: Days of missing data by sub location Id

7.6.2 Imputation Application Results

The results of filling in missing data are shown below in Figure 7.11 and show the annual
average daily traffic from the combined observed and imputed daily traffic counts for the years
where data was collected.
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Figure 7.11: AADT estimates from imputation

The figure shows how the imputed AADT are mostly stable across years and also shows error
bars for imputed AADTs where more than at least 15% of the of the daily records for any given
month were missing. The information for the error bars comes from the imputation experiments
described above. For instance, application site 258F (for bicycle) site used data from months
January, February, July, August, and September, to impute the missing data so information from
the imputation experiment above can be used to assess the potential error by using the 95™
percentile error APE. This is appended as a lower and upper bound error to give some
confidence intervals. For sites without error bars, the missing data was sparse enough (less than
15% for any one month) that it did not align with results from the imputation experiment so were
not appended. In these cases the point estimates should be pretty close to actual considering the
missing data is pretty small.

7.7 IMPUTATION DISCUSSION

The above section summarizes the relevant literature on traffic counts data imputation, performs
experiments to test a number of imputation procedures, and then applies the selected random
forest machine learning imputation procedure. Results for bicycle counts from the imputation
experiment show that results for annual estimates of traffic counts can be quite good to the



actual, with 95™ percentile error of just 18% when missing up to seven months of data and as
little as 4% if using the proper combination of months in the training set. Results are similar for
pedestrian imputation experiment results. The machine learning algorithms tested in the
experiment and deployed in the application are simply implemented if users have working
knowledge of the R statistical software environment that is free for any agencies to use. Results
of the random forest algorithm on data in the study region appear internally consistent (from year
to year) with assigned confidence intervals from the experiment results showing these results
fluctuate within a reasonable amount each year. Another useful application of the algorithm
might be to estimate counts using shorter term equipment deployments. As can be seen in the
2017 results above, where the sensors were actually not installed until mid-year, a full year of
data can be estimated in the absence of hardware. Agencies should feel comfortable with this
approach to traffic data imputation for bicycle and pedestrian traffic.
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8.0 DATA FUSION MODELING

The above sections documented the processes involved in collecting, cleaning, and preparing
annual estimates of nonmotorized traffic volumes. There are many ultimate uses of these counts
data on their own but a focus this research effort is to employ the annual counts in statistical and
machine learning modeling in order to mine the relationships that the traffic counts have with
other features in the study area to then estimate vehicle, bicycle and pedestrian volume across the
entire network, even in places where no counts have been taken. This section will document the
procedures developed to estimate vehicle, bicycle and pedestrian volumes in the Bend MPO
study area. Models will be estimated using statistical models including negative binomial and
Poisson regression specifications in addition to the model estimation using two machine learning
techniques including random forest and extreme gradient boosting (XgBoost).

For each of the models, the estimated annual average daily traffic will be predicted based on
features or inputs available across the network allowing for application of the model estimation
for the whole system. These features include network characteristics such as functional
classification, speed limit, and network centrality as well as access to jobs and population. For
the bicycle and pedestrian models, additional features will be tested that aim to improve model
performance and include samples of ‘probe’ data from a smart phone app that tracks bicycle
rider trips and transit data. The data sources and processing procedure for these features will be
described in the sections below.

8.1 VEHICLE TRAFFIC DATA FUSION MODELS

This section will document the development and application of a data fusion model for vehicle
traffic in the bend MPO study area. There are two primary objectives in developing vehicle
traffic models even though this research is directed at nonmotorized travel estimation techniques.

e Objective 1 — Demonstrate accuracy of data fusion models compared to establish
reporting protocols

The first objective is to demonstrate the use of parametric and machine learning
methods for the purposes of network wide volume estimation. Because vehicle
counts data and the associated collection methods are more established and more data
exists to test models, some confidence can be established as to how these methods
work with varying amounts of data. Since vehicle counts and the vehicle miles
traveled metrics they inform are standard elements of ODOT’s annual reporting to the
FHWA, a comparison dataset for vehicle miles traveled estimates is available for
validation of the final data fusion models. The results will give a sense as to how
accurate the data fusion technique is compared to traditional approaches using the
Highway Performance and Monitoring (HPMS) procedures with varying amounts of
data. Additional test results will be presented for select model specifications where
only a subset of vehicle counts data are used to train the model with the object of
showing aggregate VMT stability even when less data is available.
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e Objective 2 — Employ estimates of network wide vehicle traffic counts in bicycle and
pedestrian models

The second objective of this section is to develop vehicle AADT measures for the
entire study area network to use in the bicycle and pedestrian models. Nonmotorized
traffic volumes are sensitive to the presence of vehicle volumes since they make users
feel less safe and in fact do lead to higher risk for nonmotorized users (CITATION).
Therefore having motorized volumes for the entire network will be important
information in the nonmotorized models developed in the other sections of this report.
The objectives of the two sections on nonmotorized traffic data fusion modeling is to
develop a working prototype that Bend MPO could use for travel monitoring and
planning purposes including in safety analyses featured as a later chapter in this
report.

8.2 DATA DESCRIPTION FOR VEHICLE TRAFFIC FUSION MODELS

The data fusion models utilize a number of data sets to train and apply models including annual
average daily traffic (AADT) estimates of traffic counts, network attributes, access to jobs and
population and a measure of network centrality. Figure 8.1 below depicts the different network
features that come together in the data fusion models to estimate the network wide AADT for
vehicles. Each of these data are explained in more detail below
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Vehicle AADT Data Fusion
Scheme

Figure 8.1: Vehicle AADT data fusion model schema

Table 8.1 below summarizes the AADT data used as the response variable in the data fusion
models. The data represents two years of data, with a number of summary statistics available in
the table by functional classification. As can be observed from the table, vehicle traffic volumes
are generally stable with minor increases in most functional classifications. Also, most of the
counts are on higher functional classification roads such as principle arterials with some counts
taken on local roads. The counts taken on local roads are usually done on network links with
higher volumes than most local facilities. These sites are selected because they are importance
connector roads to intermodal freight facilities or some other important regional destination.
That being said, these volumes are still lower than most of the other functional classifications.
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Table 8.1: Vehicle Data AADT Summary

Functional Year Vehicle AADT Summary Data
Classification Minimum | Mean | Median Std. Max | Observations
Dev.
Local 2017 | 133 719 519 893 3822 15
2018 | 123 773 559 897 3957 16
Minor 2017 | 250 670 560 484 1200 3
Collector 2018 | 240 673 580 487 1200 3
Major 2017 | 380 4173 3500 30147 | 9600 50
Collector 2018 | 360 4077 3500 3048 10000 | 49
Minor 2017 | 430 9262 8900 4184 19700 | 101
Arterial 2018 | 540 9256 9050 4230 21800 | 100
Principal 2017 |40 16639 15800 14107 | 54000 | 87
Arterial - 2018 |40 16856 16300 14262 | 55100 | 88
Other

Network data attributes used to both train and apply the model are derived from a data set
created for this research project. The network data set is a fully routable graph and has a number
of attributes including functional classification and posted speed that are useful as prediction
features but also useful to help generate the accessibility to jobs and population data described
below. Table 8.2 below summarizes the miles of network by functional classification and posted
speed limit. A significant portion of the street network is represented by local streets even
though fewer traffic counts are collected on those types of facilities since counts are typically
very low. Standard practice for agencies is to assume a static value for local streets and apply
that value to all streets of local functional classification, typically a value between 500 to 1,000
AADT per day.

Table 8.2: Network Miles by Functional Classification and Posted Speed

Functional Posted Speed
Classification 20 25 30 35 40 45 50 55
Local 0.0 423.0 | 0.0 0.0 0.0 0.0 0.0 0.0
Collector 1.6 16.6 12.2 10.2 6.2 6.2 0.0 0.0

Minor Arterial 1.5 10.0 3.9 26.5 7.6 10.7 0.6 0.0

Principal Arterial - | 0.0 5.7 0.0 6.6 1.0 26.0 0.0 3.2
Other

Figure 8.2 shows the count site locations and layout of the functional classification system across
the study are in Bend MPO. As described in the table above, many of the count sites are on
higher functional classification roads with many concentrated along Highway 97 corridor and
supporting arterials. For the purposes of reporting, the highways in the study region, though
controlled access in many parts, is classified as a principal arterial - other.
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Figure 8.2: Count site location and functional classification for Bend MPO study area

Accessibility data are created by using analytic methods that combine the functionality of a
routable network with data on population and employment location at a zonal level, either
transportation analysis zone or Census block. Each link in the network is assigned accessibility
to population and employment measures based on the number of each opportunities that can be
reached by either travel time or shortest path distance. Accessibility measures are created by
first calculating the drive time from each network node to the network node nearest the centroid
of the Census block or transportation analysis zone (TAZ) using the igraph library (Csardi et al.
2006) within the R statistical computing environment. Link cost is either the travel time to
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traverse the link based on the link length (for shortest distance) or the length and posted speed
limit for driving travel time. The number of opportunities (either jobs or people) is calculated for
various shortest path and drive time thresholds and then summing the number of people and jobs
within these different thresholds. Different thresholds are used because different trip purposes
have different trip lengths and these thresholds aim to simulate that heterogeneity in trip making
decisions. However, because the travel network is relatively small most jobs and population are
reachable within a low travel time and distance threshold. Figure 8.3 below shows the results for
total jobs accessible within a 10 minute drive time from all given network links. The core area
of the region, downtown Bend, has significantly higher access to jobs due to its proximity to jobs
concentrated in this area. Figure 8.4 below shows the results of link level accessibility to
population for the study region. Since population density is higher near the downtown of the
study region the accessibility to these people from the links near these inner areas is also higher
than the outlying areas of the region with lower population density.
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Figure 8.3: Total jobs accessible within 10 minute drive
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Figure 8.4: Total population accessible within 10 minute drive

The above figures show just two of the accessibility measures used in the model training but
many more were created and utilized. Since the employment accessibility data is based on
LEHD, there are nearly 40 types of employment ! with many job types (manufacturing,
healthcare, retail) as well as worker types (worker sex, race, and educational attainment)
represented. For the population accessibility measures, total population, households, and park
acres, are also included. These opportunity measures are also computed at multiple thresholds
(as mentioned earlier) resulting in hundreds of features usable in the machine learning
algorithms.

The next measure used for the vehicle data fusion model are measures of network centrality. In
graph or network analysis, centrality is a measure of importance of nodes and their respective
edges (links) to one another. This type of analysis is very common in understanding social
media data, commerce and logistics but is also key to understanding traffic flow. High measures
of centrality in transportation networks are nodes and links that are commonly used to traverse
the network, such as one of just a few bridges over a river or high speed facilities like highways

' LEHD information - https://lehd.ces.census.gov/data/lodes/LODES7/LODESTechDoc7.4.pdf

57


https://lehd.ces.census.gov/data/lodes/LODES7/LODESTechDoc7.4.pdf

and arterials that provide quick traversal across a network. This research employed edge
betweenness as is define as the number of the shortest paths, or in this case the lowest cost paths
that go through a link in a network (Zhang 2013). This measure of centrality was calculated
using the R statistical computing software package igraph’s edge betweenness function which
calculates the shortest path from each node to all other nodes in the network and returns the
count of trips on the traversed links. For this calculation, weights were assigned to the links to
represent travel time by multiplying the link distance by the posted travel speed. Figure 8.5
below shows the results of the least cost path network centrality measure used in the vehicle data
fusion model. As can be seen in the figure, higher measures of centrality are assigned to the
Highway 97 and Highway 20 corridors. The next most important links are the principal arterials
which also have relatively high measures of centrality. Local streets have very low measures of
centrality because the frequency of their use is low when traversing the network from a given
origin node.
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Figure 8.5: Network centrality using least cost path
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8.3 VEHICLE TRAFFIC DATA FUSION MODEL RESULTS

The results of the vehicle data fusion models will be presented in four sections below. The first
section will describe and summarize the machine learning based data fusion models including
the features used and the cross-validation results. The second section will describe and
summarize the parametric based data fusion models including the final model covariates and
results of the cross validation results. For the machine learning and regression approaches root
mean squared error (RMSE) and r-squared values are used to measure model performance. The
third section will compare applied machine learning and regression models to known estimates
of vehicle miles traveled for the study area from the Highway Performance Monitoring System
(HPMS). The third section will also show model results from subset models, models in which
only a subset of the AADT data are used to train the model with an objective of showing
aggregate VMT estimate stability even when less data is available. The last section will offer a
discussion of the model approaches and discuss the tradeoffs and opportunities for each
approach.

8.3.1 Machine Learning Based Vehicle Traffic Data Fusion Model Cross-
Validation Results

This section summarizes model features and cross-validation results of machine learning based
data fusion models. Cross validation was done through both an internal and external cross
validation process. The results presented below are based on two machine learning algorithms
including extreme gradient boosting (XgBoost) and random forest. Two sets of cross validation
are performed, one that is characterized as internal that uses random partitions in a 10-fold cross
validation and is done as a part of the model training process within the caret package. The
second cross validation process, characterized as external, is performed on a select set of model
specifications with high accuracy from the first validation and uses a stratified partition to do
another 10-fold cross-validation. The internal cross validation uses 10 folds and was performed
twice. The internal cross validation executes rather quickly for each specification taking about
12 minutes to run using seven cores running in parallel on a four core system with eight total
processors each with 3.4 Ghz processor speed. Multiple model specifications are tested in the
internal validation step using two type of algorithms (XgBoost and Random Forest) with a set of
selected model specification being put forward to the external cross validation process.

A key feature of machine learning algorithms are the ability to change input parameters specific
to the machine learning algorithm. The purpose of tuning parameters is to find the optimal trade-
off between model complexity and the training set size. For this research parameters are held
constant for all the different cross validation tests with ranges of inputs described below Table
8.3. These parameters are summarized in the Appendix for select models.
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Table 8.3: Hyper Parameter Description and Input Range

Parameter Package | Values |Algorithm Description
Parameter | Used
Name

Boosting  |nrounds 50,75, |XgBoost |Corresponds to the number of boosting rounds or

Rounds 100 trees to build. Its optimal value highly depends on
the other parameters, and thus it should be re-tuned
each time you update a parameter. You could do
this by tuning it together with all parameters in a
grid-search, but it requires a lot of computational
effort.

Learning Rate |eta 0.05, XgBoost | Step size shrinkage used in update to prevent
0.075, overfitting. After each boosting step, we can
0.1 directly get the weights of new features, and eta
shrinks the feature weights to make the boosting
process more conservative.
Maximum |max_depth |6 XgBoost |Maximum depth of a tree. Increasing this value will
Depth through make the model more complex and more likely to
8 overfit.
Minimum |min_child |2.0, XgBoost | Defines the minimum sum of weights of all

Child Weight |weights 2.25,2.5 observations required in a child. Used to control
over-fitting. Higher values prevent a model from
learning relations which might be highly specific to
the particular sample selected for a tree. Too high
values can lead to under-fitting hence, it should be
turned using CV.

Subsample |Colsample [0.36, XgBoost | Subsample ratio of columns when constructing
Ratio of bytree 0.4,0.5 each tree. Subsampling occurs once for every tree
Columns constructed.

Gamma gamma 0 XgBoost | A node is split only when the resulting split gives a
positive reduction in the loss function. Gamma
specifies the minimum loss reduction required to
make a split. Higher values make the algorithm
more conservative. The values can vary depending
on the loss function and should be tuned.

Subsample |subsample |1 XgBoost | Subsample ratio of the training stances. Setting it to

ratio 0.5 means that XGBoost would randomly sample
half of the training data prior to growing trees, and
this will prevent overfitting. Subsampling will
occur once in every boosting iteration.
Split Variable | mtry 2 Random |Number of drawn candidate variables in each split
Count through |Forest
6
Trees to Grow |ntree 2000 Random |Number of branches will grow after each time split.
Forest
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Many different kinds of training features were tested but selected scenarios are described in
Table 8.4 below. The primary difference in the feature scenarios is that the features used to
describe the functional classification differ. In the Base Features + Is Ramp scenario the
functional classifications include both local and federal classifications which differ slightly with
federal classifications having more classes, including a split for collector classes into a minor and
major classification. In both scenarios there is a dummy variable called Is Ramp included to
distinguish highway on and off ramps separately from the principle arterials they are classified as
in the classification schemes (both local and federal).

Table 8.4: Vehicle Model Feature Scenario Description

Feature Specification Description

Federal Fc Accessibility calculated using least cost paths based
on travel time; Auto Centrality, Local & State
Functional Classification

Local Fc Accessibility calculated using least cost paths based
on travel time; Auto Centrality, Local Functional
Classification only with minor/major collector

Model performance is based on RMSE and r-squared values while the number of features used in
the model is also presented. The internal validation results are a product of the initial model
training using the caret package in R and uses a random partitioning process, using 10 folds and
performed two times. The results from the internal cross validation tests show that the XgBoost
algorithm significantly out performs the random forest algorithm with a minimum r-squared
value of 54% versus a 30% in the random forest. The maximum r-squared value for XgBoost is
73% while the maximum for random forest was only 43 percent. The number of features used in
the XgBoost is generally fewer than the random forest.

Table 8.5: Internal Cross Validation Results for Vehicle Model

Algorithm Specification | RMSE R- Algorithm Feature Year
squared Count
Federal Fc 7637 43% Random Forest | 352 2017
Federal Fc 8160 42% Random Forest | 352 2018
Local Fc 8303 30% Random Forest | 338 2017
Local Fc 8752 33% Random Forest | 338 2018
Federal Fc 5025 73% XgBoost 163 2017
Federal Fc 5529 70% XgBoost 143 2018
Local Fc 6631 54% XgBoost 156 2017
Local Fc 6806 58% XgBoost 137 2018

One way to diagnose how the machine learning algorithms are using the input features is to use a
measure of variable importance. In Table 8.5 the number of features that were ultimately found
to be useful in predicting AADT were summarized for each specification and algorithm. Ofall
of the features used in each algorithm, the top 10 most important are displayed in Figure 8.6.
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This chart summarizes the relative number of times a feature is used in the splitting of trees. The
top panel shows both model specifications (Federal Fc and Local Fc) for the random forest
algorithm and the bottom panel shows variable importance summary for the XgBoost algorithm.
The random forest results show that speed, shortest path and auto centrality, street classes with
principle arterial are some of the more important features in the decision tree splitting. Access to
employment features that were relatively importance include access to retail trade, and native
American and Hispanic workers as well as workers ages 30 to 54 and 55 and older all within 5
minute drive time from the network link in which the count location resides.
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Figure 8.6: Variable importance for select vehicle data fusion models

For the XgBoost algorithm some of the same features were of most relative importance such as
speed and auto centrality but also includes measures of bike centrality. Streets classified as
principal arterials were also shown to be important. Access to workers variables differed
compared to the random forest algorithm and include access to educational, information, retail
trade, and construction jobs.

The variable used in the machine learning algorithms were selected based on a theoretical
relationship to vehicle traffic counts and the variables highlighted in the variable importance
charts make intuitive sense for being important in the prediction of vehicle counts. Centrality
measures would be expected to be important since high centrality are places on the network with
many important connections to other parts of the network. Any measure of network
classification, like principal arterial, would also be expected considering those designations are
in fact based on the expected volume at that location. And worker access being important is not
surprising considering vehicle traffic is a proxy for economic activity, which requires workers. It
should be noted that the variables displayed and discussed in the above section only include the
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top 10 variables for each algorithm and specification but many others are used in these machine
learning approaches. In the random forest models the number of features is up to 352 and 163
for the XgBoost algorithm.

External validation tests are performed using both a 10-fold and a leave-one-out (LOO) process.
The purpose of the external validation tests are twofold with the first motivation looking to
understand in more detail the prediction error by volume bin and functional classification which
is not possible to extract from the internal cross validation results. The second motivation is to
try and determine how much the model results might be biased by spatial autocorrelation making
earlier test results somewhat biased because sites used in training may be near tests where the
model is applied. To control for this, the LOO cross validation only uses sites in the training that
are at least 1,000 feet from the test site.

Results from the external 10-fold cross validation analysis are presented below in Figure 8.7 and
shows the mean absolute percent error by volume bin for the two model specifications and
algorithm types. These results demonstrate that XgBoost model works better than the random
forest for most volume bin predictions. Additionally, the Federal Fc specification seem to
perform better than the Local Fc model specification, likely due to the additional categories
available in the federal functional classification scheme. Generally, for all model specifications
and algorithm types, the error diminishes as the volume increases. Estimating volumes at low
volume of less than 1,000 AADT results in a lot of error in percentage terms, likely due to a low
number of observations for roads with low volume in the training data.
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Figure 8.7: External 10-fold cross validation for vehicle models
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Because the XgBoost algorithm worked best based on the internal validation and the 10-fold
external validation the LOO cross validation process only tested this approach. The Local Fc
specification was selected for the LOO process due to its better performance in matching HPMS
data total shown in the next section. Table 8.10 summarizes the results of the LOO cross
validation. Generally the error decreases with increasing model volume with the model
struggling to predict well the lowest volume bin categories.

Table 8.6: External Leave-One-Out Cross Validation Results for Vehicle Model

Algorithm Volume Bin Absolute Percent Number of
Error Sites
Mean Median

XgBoost I-1K 711% 547% 29
1K-2K 245% 170% 13
2K-5K 136% 109% 47
SK-10K 46% 30% 78
10K-20K 30% 28% 51
20K-30K 28% 23% 15
30K-40K 24% 26% 5
40K-55K 30% 29% 11
All Sites 145% 39% 249

Figure 8.8 shows the correlation between the observed AADT and the estimated AADT from the
LOO tests showing the general relationship and the trend toward over and under predicting.
Higher volume roads look to be under estimated while the mid volume sites look to be about
split. It would not be surprising to have the higher volume roads under predict considering this
model does not account for external traffic other than in the response feature (AADT). For
instance there are not training features that account for access to population and jobs outside the
study area.
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Figure 8.8: Observed and estimated AADT from LOO tests

These results reveal that error generally decreases as the volume increases. These results should
be considered more rigorous compared to the 10-fold cross validation because only sites at least
1,000 feet away from the test site are used to train the model used in prediction with an aim to
alleviate issues of spatial autocorrelation. Surprising when compared to the 10-fold cross
validation results, the LOO results are slightly better in some cases. Table 8.7 compares the
results from these two validation approaches showing that in some cases the LOO results are
slightly better but based on overall (All Sites) median error the two approaches are generally
telling the same story that low volume roads remain difficult to predict and error diminishes as
volume increases.

Table 8.7: Comparison of 10-Fold and LOO Cross Validation Results

Volume Bin Mean Absolute Percent Error Median Absolute Percent Error
10-Fold LOO 10-Fold LOO

1-1K 1700% 711% 619% 547%

1K-2K 154% 245% 128% 170%

2K-5K 104% 136% 70% 109%
S5K-10K 44% 46% 31% 30%
10K-20K 28% 30% 22% 28%
20K-30K 32% 28% 29% 23%
30K-40K 18% 24% 18% 26%
40K-55K 31% 30% 27% 29%
All Sites 254% 145% 40% 39%
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8.3.2 Statistical Vehicle Traffic Data Fusion Model Cross-Validation Results

This section will describe the development of statistical models to estimate vehicle AADT
including an exploration of the individual effects of the covariates used in the final model. Since
the number of available covariates for estimating a statistical model for vehicle traffic are
numerous it was necessary to use a testing procedure to determine the variables with the best
model prediction accuracy. This process uses 10-fold cross-validation to test the prediction
accuracy of thousands of possible model specifications. For the vehicle model 9,408
specifications are tried based on a grid of all possible combinations of select variables including
population access, total employment access, retail, health, and warehouse workers, intersection
density, auto centrality and shortest path centrality. All the accessibility measures use drive time
network distance thresholds of 5-30 minutes with 5 minute increments. All models are estimated
using a negative binomial regression specification due the counts data featuring over dispersion
where the dependent variable (vehicle AADT) variance is greater than the mean of the counts
which is generally the case for traffic counts data. The model is specified as linear-in-parameters
with a log-link function:

Yia ~ NegBinom(pu;q)
(8-1)
log(mia) = BiXia
(8-2)
Where:

Y;q = Average annual daily traffic (AADT) volume at site i

B = Vector of parameters for count site i

X4 = Vector of observed covariates for count site i

A custom process was developed in R where for each year of vehicle counts available the data is
partitioned into 10 folds using a stratified random sample ensuring functional classification
designations are equally distributed among the folds. A negative binomial regression model is
estimated on each of the k-1 groups (training data) and then estimated on the k-9 (test data) and
then compared to the observed data. For each selection of variables three performance metrics
are computed include RMSE, mean absolute percent error (MAPE) and adjusted r-squared.
Based on these metrics models top performing models are selected for further examination. For
the vehicle models the final estimated parameters are presented in Table 8.10 for three select
models. Model results below present the estimated coefficient and the associated standard error
and p-value for selected models with the highest r-squared, the lowest RMSE, and lowest MAPE
for the two periods available including 2017 and 2018 data.
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Table 8.8: Regression Results for Vehicle Model

Coefficient Std. Error z value P-value Feature Update Year | Metric
8.741E-04 0.0003 2.6276351 0.0086 Population 30 2017 | Highest R
9.700E-04 0.0004 2.603193 0.0092 Num_Intersections 15 Squared
1.8315 0.2107 8.6922012 0.0000 Major Collector
2.5670 0.1954 13.139571 0.0000 Minor Arterial
-0.0130 0.5332 -0.02435 0.9806 Minor Collector
3.1780 0.2028 15.672757 0.0000 Principal Arterial — Other
-1.30279 0.1538 -6.6984048 0.0000 Is RampTRUE
7.501E-04 0.0003 2.2773467 0.0228 Population 30 2018
1.247E-03 0.0004 3.3523657 0.0008 Num Intersections 15
1.7426 0.2038 8.5509856 0.0000 Major Collector
2.5017 0.1877 13.330093 0.0000 Minor Arterial
-0.0624 0.5243 -0.119005 0.9053 Minor Collector
3.1341 0.1945 16.11221 0.0000 Principal Arterial — Other
-1.0519 0.1522 -6.909997 0.0000 Is RampTRUE
-3.613E-05 2.40E-05 -1.507485 0.1317 Total number of jobs 15 Min. 2017 | Lowest
9.332E-04 3.75E-04 2.4875365 0.0129 Population 30 RMSE
9.513E-04 0.0004 2.4672678 0.0136 Num _Intersections 15
1.245E-07 2.39E-08 5.2207689 0.0000 Auto Centrality
1.6891 0.2027 8.3345421 0.0000 Major Collector
2.3093 0.1942 11.892813 0.0000 Minor Arterial
0.0734 0.5095 0.1440024 0.8855 Minor Collector
2.8938 0.2040 14.185107 0.0000 Principal Arterial — Other
-0.9837 0.1526 -6.447746 0.0000 Is RampTRUE
-3.522E-05 2.38E-05 -1.450019 0.1389 Total number of jobs 15 Min. 2018
8.474E-04 0.0004 2.2815215 0.0225 Population 30
1.087E-03 0.0004 2.8286788 0.0047 Num_Intersections 15
1.250E-07 2.37E-08 5.2638814 0.0000 Auto Centrality
1.5959 0.1964 8.1277663 0.0000 Major Collector
2.2314 0.1870 11.931655 0.0000 Minor Arterial
8.747E-03 0.5009 0.0174619 0.9861 Minor Collector
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2.8423 0.1963 14.481998 0.0000 Principal Arterial — Other

-0.9677 0.1515 -6.387225 0.0000 Is RampTRUE
-5.552E-05 2.56E-05 -2.169612 0.0300 Total number of jobs 15 Min. 2017 | Lowest
1.902E-03 0.0010 1.9532807 0.0508 Population 30 MAPE
-5.684E-03 0.0085 -0.670942 0.5023 Num Intersections 30
2.704E-04 0.0001 2.0563793 0.0397 Number of jobs in Retail Trade 10 Min.
8.253E-05 4.69E-05 1.7608205 0.0783 Jobs in Health Care and Social Assistance 10 Min.
-1.232E-03 0.0005 -2.408753 0.0160 Jobs in Transportation and Warehousing 10 Min.
1.259E-07 2.41E-08 5.2277651 0.0000 Auto Centrality

1.6464 0.2018 8.1600414 0.0000 Major Collector

2.2584 0.1943 11.623813 0.0000 Minor Arterial

-0.0548 0.5039 -0.108825 0.9133 Minor Collector

2.8102 0.2039 13.783979 0.0000 Principal Arterial — Other

-0.9897 0.1515 -6.534239 0.0000 Is RampTRUE
-5.154E-05 2.55E-05 -2.022899 0.0431 Total number of jobs 15 Min. 2018
1.358E-03 0.0010 1.4277074 0.1534 Population 30
-2.080E-03 0.0082 -0.252644 0.8005 Num_Intersections 30
3.294E-04 0.0001 2.4860195 0.0129 Jobs in Retail Trade 10 Min.
5.305E-05 4.60E-05 1.1529826 0.2489 Jobs in Health Care and Social Assistance 10 min.
-1.226E-03 0.0005 -2.40941 0.0160 Jobs in Transportation and Warehousing 10 Min.
1.263E-07 2.40E-08 5.2576776 0.0000 Auto Centrality

1.5637 0.1964 7.9613189 0.0000 Major Collector

2.1749 0.1878 11.579602 0.0000 Minor Arterial

-0.1139 0.4965 -0.229366 0.8186 Minor Collector

2.7408 0.1967 13.937237 0.0000 Principal Arterial — Other

-0.9881 0.1510 -6.543958 0.0000 Is RampTRUE
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Most of the selected variables are significant within the 0.05 level of significance though some
variables not commonly found to be significant at this level include categorical variable for
minor collector and a few of the access to jobs variables. The minor collectors are probably not
significant because there are so few observations in the counts data on this functional
classification. Table 8.9 below summarizes the three select models error measures. These error
measures omitted the lowest volume bin (1-1K) since the error for sites with this range of
volume were very high.

Table 8.9: Model Diagnostic Information for Vehicle Regression Models

Specification Performance | MAPE | RMSE | Adjusted
Metric R-Squared
Population_30 + Num_Intersections 15+ | Highest R- 63% 7821.1 | 0.422
AADT + Fc¢ Desc + Is Ramp Squared
C000_15 + Population_30 + Lowest 56% 7746.3 | 0.419

Num_Intersections 15 + Auto_Centrality + | RMSE
AADT + F¢ Desc +Is Ramp

C000_15 + Population_30 + Lowest 55% 7896.9 | 0.397
Num_Intersections 30 + Retail 10 + MAPE
Warehouse 10 + Healthcare 10+

The 10-fold holdout analysis results are further summarized by volume bin (this time including
AADT within the 1-1K range) detailing the median APE for each of the models. The model with
the lowest median APE for all sites is the same model with the highest r-squared while the model
with the lowest mean APE has the highest median APE of the three models compared.

Median Absolute Percent Error by Volume Bin
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Figure 8.9: Top vehicle regression model median absolute percent error by volume bin
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8.3.3 Vehicle Model Comparison with Federal Reporting Data (HPMS)

This section will compare the results from a network wide application of the various data fusion
models against aggregate VMT estimates from the Highway Performance Monitoring System
(HPMS) to help gauge total vehicle activity estimation value. The HPMS VMT data is
submitted by state DOTs on an annual basis for each urban area within the state. VMT estimates
are submitted for each federal functional classification. For the purposes of comparing data
fusion model system wide VMT estimates, functional classifications will be reduced to just four
categories, including collector (combine minor and major) minor arterial, and principal arterial
(classified as principal arterial — other) and total VMT. Local streets are used in the data fusion
model training but because HPMS reporting for local streets assumes a blanket average for all
streets the two outcomes are not comparable. Additionally, even though models were trained for
2017 and 2018, since the employment data used in the training was for 2017 only the estimate
from that year will be compared.

Figure 8.10 below shows the results from this comparison for two machine learning model
specifications, Federal Fc and Local Fc demonstrating that in both models specifications, VMT
can be estimated within a relatively low margin of error compared to the HPSM estimate. The
XgBoost algorithm appears to outperform the random forest in this comparison, with percent
differences of -6%, 10%, and 2% and 2% for total VMT, principal arterial, minor arterials, and
collectors respectively. Even though the random forest model produces a total VMT estimate
near 0% in both model specifications shown in the figure, it appears that the over- estimate of the
collector and minor arterials helps to offset the under-estimate of the principle arterial, making
the total VMT look pretty close to the HPMS estimate.

VMT Comparison
Data Fusion vs. HPMS Estimates
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Figure 8.10: Comparison of data fusion and HPMS VMT estimates
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The next figure shows the top selected regression model results when compared to the HPMS
VMT estimates and shows the three models perform similarly when compared to the HPMS
figures. Overall error is lowest for the model where the r-squared was highest but that is
partially because the model over estimates in the principal and minor arterials and then under
estimates in the collectors. However the highest r-squared model does the best for the collector
and principal arterial.

VMT Comparison
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Figure 8.11: Comparison of VMT estimates by regression specification

The figure below compares the top model from the machine learning tests and the regression
models, (XgBoost, Local Fc & Lowest MAPE respectively) to demonstrate how each performed
when estimating network wide VMT. Both models perform well and though the negative
binomial model looks best when comparing the total VMT, as mentioned above this results looks
like this partially because of over and under estimation within the other functional classifications.
The machine learning model consistently over estimates within each functional classification
performing better in the collector and minor arterial category but then does worse than the
regression model for the total VMT on principal arterials.
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Figure 8.12: Comparison of VMT estimates by estimation method

The comparison above shows that the data fusion model technique works well to estimate the
reported HPMS VMT when data from all 250 count stations are used in the model training. In
one sense the two estimates are not all that independent from one another. In the HPMS estimate
the vehicle count on a given roadway segment is multiplied by the distance to get the VMT for
that segment. In the data fusion approach however, network links, or edges, are not summarized
to segments the way they are in the HPMS reporting. In HPMS reporting roadway links are
aggregated together to form reporting segments when the segment is believed to have the same
volume along all of its component links. In the data fusion model all links are assigned an
AADT value in a more disaggregate fashion with links ending at each intersection in the
network. Figure 8.13 shows an example on the study area network where a set of links (right) is
aggregate to represent a segment (left) when doing HPMS reporting. The point of describing
these differences is to point out that the VMT comparisons are comparing an aggregate HPMS
network represented by 312 segments with a much more disaggregate network of 13,458 links or
edges in the data fusion model.
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Figure 8.13: Comparison of HPMS segments and data fusion model links

In addition to showing how the machine learning approach works for estimating network wide
VMT when using all count sites available, roughly 250 sites with an AADT estimate. However,
for the bicycle and pedestrian models below the AADT data are more sparse and so it’s of
interest to test the VMT estimate stability when only a subset of the 250 sites (roughly 83 sites)
are used to train the model. This scenario is more analogous to the count data circumstances the
nonmotorized models will be working within.

Figure 8.14 below shows the VMT estimates from the selected machine learning model,
aggregated to functional classification, compared to the VMT estimates from HPMS. The mean
difference of all the subset models is also shown in the top panel. The total VMT estimate error
ranges from 3% in subset model 2 to -14% in subset model 3 though model 2 performance is
impacted by an underestimate in principal arterials which then offsets the over estimates in minor
arterial and collectors. Similar to the comparison results using full data presented in Figure 8.10
above, the collector facilities have the most error with error ranging from -20% to -59 percent.
Minor arterials error is lowest with -8%, 0% and 18% for subset models 1 through 3 respectively.
These results indicate that for high level reporting, VMT estimates using subsets of the full data
available are relatively stable. These results should lend additional confidence to the results
presented in the nonmotorized models below.

73



VMT Comparison
Machine Learning vs. HPMS Estimates
Auto Access; Local AADT; Auto Centrality; Simple Fc Desc

Total VMT
Principal Arterial - Other-

Minor Arterial-

SI2PON 325aNS (I uea

Collector-

Total VMT
Principal Arterial - Other-

Minor Arterial-

L-1esqng

Fc_Desc

. Collector

Minor Arterial

Principal Arterial - Other
[ Total vMT

Collector-

Total VMT

Principal Arterial - Other-

Functional Classification

Z-esang

]

Minor Arterial-

Collector- -2

Total VMT-

Principal Arterial - Other

Minor Arterial- -1

£-19sgng

Collector-

60% -40% 20%
Percent Difference
Negative Value Indicates Model Over Estiamtion

o
&2

Figure 8.14: Subset model comparisons with HPMS

8.3.4 Vehicle Traffic Data Fusion Model Discussion

The above sections describe the data and modeling results from the estimation and application of
the data fusion approach using machine learning and regression. Results from three cross
validation are presented for the machine learning model testing in order to present the
performance of different model specifications and machine learning algorithms. Generally, the
results show that predicting accurately on lower volume roads is a challenge with error
diminishing as volume increases. Results from the 10-fold and LOO cross validation are
comparable but the LOO is more rigorous because it removes near sites from the training data to
ensure that cross validation results are not biased by having near neighbors in the estimation
process. Cross-validation using the regression approach are comparable with the machine
learning for the overall median error. But as demonstrated in Figure 8.15 below the machine
learning model performs worse on roads with volumes of between 1K and 10K and then 40K+
while the regression model performs between in the other volume categories.
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Figure 8.15: Median error by volume bin by estimation type for vehicle data models

These results would likely be better is some kind of probe data were used to help train the
models but no probe data were available for this effort. Future research should explore the use of
probe data in improving these modeling approaches.

Even though median error in the cross validation tests range from 16% to 619%, models applied
for total VMT estimation reveal similar results with the selected model matching all functional
classification summaries by 13% or less. The high accuracy when compared to HPMS is the
best evidence that these data fusion modeling approaches may work well for estimating bicycle
miles and pedestrian miles traveled when deployed using nonmotorized specific data. Evidence
of the stability of these approaches is provided in Figure 8.14 where the results of three subset
models, with roughly 80 count locations per model, are presented. The results from each model
compare relatively well with the VMT estimates from HPMS though collector streets continue to
perform worse than desired.

8.4 BICYCLE TRAFFIC DATA FUSION MODEL

This section on bicycle data fusion modeling will be divided into two parts with the first part
describing the data used in the machine learning and regression based data fusion modeling
while the second part details the cross-validation tests and final application results of the two
models. The second part will feature a discussion of the trade-offs between the two data fusion
modeling approaches.
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8.5 DATA DESCRIPTION FOR BICYCLE TRAFFIC FUSION MODELS

A number of features used in the bicycle data fusion model are described in the section below.
Figure 8.16 shows the overall data fusion schema and presents key network features used to train
the bicycle data fusion model. As noted above in the vehicle model data description, this schema
representation does not show all features used, for instance the access to jobs feature shown in
the figure below actually has over 600 different versions when all worker industry, demographic,
and access threshold combinations are computed.

/ Strava Counts \

({rmecom 1

U

Figure 8.16: Bicycle data fusion model schema

Table 8.10 below summarizes the AADT estimates for bicycle traffic by bicycle facility type for
three years of data. In addition to the summaries by year, summaries for rolling averages are
also presented where 2017/2018 denoted the average of those years of data. These summaries
are constructed and presented below to take advantage of as much of the counts data as possible
for data fusion modeling and are used in place of applying a growth factor. Observations from

76



the table below show that bicycle traffic volumes on off-street paths are higher (on average) than
streets with bike lanes which are generally higher than places with bike lanes. The counts appear
to be trending downwards for each facility type though the averaging of years helps to smooth
those declines out reducing the influence of any single year.

Table 8.10: Bicycle Traffic Count Summary

Bicycle Year Bicycle AADT Summary Data
Facility Minimum | Mean | Median | Std. Max | Observations
Dev.
No Facility | 2017 10 42.4 21 55.1 140 5
2018 15 53 25 51.9 170 11
2019 2 24.2 23.5 13.5 57 20
2017/2018 | 12 37.8 23.5 43.9 170 12
2018/2019 | 2 24.5 19.5 31 170 26
Bike lane | 2017 9 64.3 55 45.6 151 13
2018 3 43.4 30.5 42.8 187 38
2019 2 36.8 27 39 183 33
2017/2018 | 3 22.6 20 15.6 84 38
2018/2019 | 3 23.4 20.5 17 82 48
Off-street | 2017 39 89 101 34.2 115 4
path 2018 4 63.3 45.5 56.4 205 18
2019 5 56.5 45 42.3 159 13
2017/2018 | 4 57.5 43.6 54.3 205 18
2018/2019 | 4 47.8 34.6 44.1 182 20

Bicycle traffic have been collected at nearly 100 locations over the three years where data was
actively collected. Those locations are displayed below in Figure 8.17. Many of the locations
are on facilities where bicycle users would be expected to use and thus inserts a certain amount
of bias where the model would likely be biased upward, especially at sites with very low or zero
bicycle activity. Later in the report an approach is proposed to handle the issue of having no
zero counts in the observed bicycle traffic counts data. Another feature shown in Figure 8.17 is
the bicycle specific network elements including the location of bicycle lanes and off-street paths.
These will also be used in the model training process.

77



Legend

Bicycle Count
@ Stations

; Streets

_____ -4 i | Bike Facility

i Bike Lane

. P i| _ Off-street
; i| ~Path

g Federal Aid
7 £=:Urban
e Boundary

Figure 8.17: Bicycle Count Locations

Table 8.11 below summarizes the number of miles of network in a cross classification table of
bicycle facility and functional classification. The region is currently implementing bicycle
boulevards, or neighborhood greenways, but currently this designation will not be used in this
research. The two bicycle facilities are bicycle lanes either on one or both sides of the street and
an off-street multi use path. It should be noted that the two highways that intersect the study
region, Highway 97 and Highway 20, are technically classified as principal arterial — other but
are summarized below as highway to emphasize that these facilities have bike lanes, including
on the on and off ramps. No direct bicycle traffic count measurement of these facilities has been
taken but activity would be expected to be limited due to the high speed, high vehicle volume
conditions.
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Table 8.11: Bicycle Network Summary

Functional Classification Bicycle Facility Type
No Bike Bicycle Off-street Total
Facility Lanes path
Highway* 0.0 23.5 0.0 23.5
Principal Arterial - Other | 1.6 14.8 0.0 16.5
Minor Arterial 5.8 54.9 0.0 60.7
Collector 20.6 323 0.0 52.9
Local 419.7 3.4 0.0 423.0
Off-street path 29.1 0.0 50.8 79.8
Total 476.8 128.9 50.8 656.4

*Officially a Principal Arterial - Other but functions very much like a controlled access
freeway/highway

As mentioned above the network wide training features differ from the vehicle models in many
cases to better account for how people on bicycles use the system. For instance, when
calculating the network centrality and accessibility measures we do not assume the link costs are
based on posted speed and so different links appear more important in the ‘bicycle’ centrality
measure. Similarly, access to jobs and population are more limited because people on bikes are
not willing to travel as far as someone in a vehicle to access amenities. Additionally, instead of
using a drive time metric for measuring access a distance threshold is used. Figure 8.18below
displays one of the nonmotorized specific measures and shows the total jobs accessible within a
0.5 mile bicycle ride. Similar to some of the observations found above in the vehicle model
inputs for total jobs access, employment centers can be seen in the figure with concentrations of
jobs in the downtown core and north east where a large hospital resides. It should be noted
similar to the accessibility measures created for the vehicle data fusion model above, multiple
measures of accessibility have been created for the bicycle models using all available job types
in the LEHD data. Additionally, accessibility was calculated using multiple distance thresholds
of half-mile increments from 0.5 to 6.0 miles. All of these features are tried in the machine
learning training though not all end up being important.
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Figure 8.18: Jobs accessible within a 2 mile bicycle ride

Another unique feature in the bicycle data fusion models include counts of users of a bicycle
specific smart phone app called Strava which allows people who ride bikes to download the app
and use the GPS functionality of their phones to record their trip. Data for this study is available
for each year in which there are counts. The data for 2018 are shown in Figure 8.19 below.
These data are likely just a subset of total bicycle users and some research has shown that they
do not reflect the general bicycle rider population. These data may be thought of as probe data
similar to data from vendors such as INRIX that many DOTSs use to monitor traffic speeds.
Based on a review of concentrations of Strava user trips are in the study area, there appears to be
high level bicyclists that are less sensitive to streets with higher speed limits with lots of
vehicles. This observation is based on the relatively high number of Strava users on minor and
major arterials. Many of the local streets have low to zero counts of Strava rider counts, and a
lot of the activity is concentrated in the western portion of the study region, perhaps due to that
part of the regions access to mountain biking trails west of the urban area.
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Figure 8.19: Strava rider counts 2018

A bicycle specific measure of centrality has also been created for the bicycle data fusion model
using the approach developed by Broach et al. (2009) that accounts for out of direction travel
required to remain on streets with characteristics that make the average bicycle rider feel safe. A
summary of the bicycle centrality measure is shown in Figure 8.20 below. This measure of
centrality emphasizes trips on bike lanes and off-street paths as opposed to just the shortest
distance. Vehicle volume is also taken into account which is why the bicycle centrality measure
does not have Highway 97 as an important link like it is in the vehicle model data.
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Figure 8.20: Bicycle specific network centrality

A number of features used in the bicycle data fusion model are described above. Below in
Figure 8.16 the overall data fusion conceptual model is presented to summarize the network
features used to train the bicycle data fusion model. As noted above, this conceptual
representation does not show all features used, for instance the access to jobs feature shown in
the figure below actually has over 600 different versions when all worker industry, demographic,
and access threshold combinations are computed.

8.6 BICYCLE TRAFFIC DATA FUSION MODEL RESULTS

The results of the bicycle data fusion models will be presented in four sections below. The first
section will describe and summarize the machine learning based data fusion models including
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the features used and the cross-validation results. The second section will describe and
summarize the regression based data fusion models including the final model covariates and
results of the cross validation results. For the machine learning and regression approaches root
mean squared error (RMSE), absolute percent error, and r-squared values are used to measure
model performance. The third section will then compare total bike miles traveled estimates
when applying select models to the entire network. In addition the third section will discuss an
approach to handling upwardly biased estimates of bicycle traffic on low density local streets.
The fourth section summarizes these results and offers a discussion about the two methods.

8.6.1 Machine Learning Based Bicycle Traffic Data Fusion Model Cross-
Validation Results

This section summarizes the cross validation procedures applied in the bicycle machine learning
model development element of this research as well as describes the features used in each of the
machine learning algorithms. Similar to the vehicle model training, cross-validation was done
through both an internal and external cross validation. The results presented below are based on
two machine learning algorithms including extreme gradient boosting (XgBoost) and random
forest. Two sets of cross validation are performed, one that is characterized as internal that uses
random partitions in a 10-fold cross validation and is done as a part of the model training process
within the caret package. The second cross validation process, characterized as external, is
performed on a select set of model specifications with high accuracy from the first validation and
uses a stratified partition to do another 10-fold cross-validation. The internal cross validation
uses 10 folds and was performed twice. The internal cross validation executes rather quickly for
each specification taking about 10 minutes to run using seven cores running in parallel on a four
core system with eight total processors each with 3.4 Ghz processor speed. Multiple model
specifications are tested in the internal validation step using two type of algorithms (XgBoost
and Random Forest) with a set of selected model specification being put forward to the external
cross validation process.

Many different kinds of training features were tested but selected scenarios are described in
Table 8.12 below. The primary difference in the feature scenarios is that the A/l + Strava
specification includes Strava data rider counts. Models were tested separately to determine how
the use of Strava impacts the model performance. Otherwise, both models use a number of
network features described in more detail in the data description section above.

Table 8.12: Bicycle Model Feature Specification

Feature Description
Specification
All Uses all network features including multiple measure of centrality,

accessibility, and network characteristics

All + Strava Uses all the network features described in "All" specification plus the
Strava rider counts

Diagnostic information includes RMSE and r-squared values while the number of features used
in the model is also presented. The internal validation results are a product of the initial model
training using the caret package in R and uses a random partitioning process, using 10 folds and
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performed two times. The results from the internal cross validation tests show that the XgBoost
algorithm and random forest algorithm are similar in performance with a minimum r-squared
value of 28% for XgBoost versus a 27% in the random forest. The maximum r-squared value for
XgBoost is 32% while the maximum for random forest was 47 percent. The number of features
used in the XgBoost is generally fewer than the random forest with at most 277 features while
the random forest used nearly double with as many as 511 features being used.

Table 8.13: Internal Cross Validation Results for Vehicle Model

Algorithm RMSE | R-squared Algorithm Feature Year

Specification Count

All + Strava 33.1 47% Random Forest | 514 2017+2018

All + Strava 26.8 33% Random Forest | 514 2018+2019
All 323 39% Random Forest | 511 2017+2018
All 24.6 27% Random Forest | 511 2018+2019

All + Strava 34.7 29% XgBoost 226 2017+2018

All + Strava 25.7 32% XgBoost 274 2018+2019
All 34.6 32% XgBoost 238 2017+2018
All 25.8 28% XgBoost 277 2018+2019

One way to diagnose how the machine learning algorithms are using the input features is to use a
measure of variable importance. In Table 8.5 the number of features that were ultimately found
to be useful in predicting bicycle AADT were summarized for each specification and algorithm.
Of all of the features used in each algorithm, the top 20 most important are displayed in Figure
8.6. This chart summarizes the relative number of times a feature is used in the splitting of trees.
The top panel shows both model specifications All and All + Strava) for the XgBoost algorithm.

The XgBoost model using the Strava feature (4// + Strava) used the Total Strava commute
riders. Access to total jobs and jobs within specific job categories (accommodation and food
services, professional, scientific, and technical, as well as manufacturing) male workers all at
various thresholds with common thresholds being at half-mile (2640), one mile (5280) and one
and a half mile (7920). Bike centrality was also in the top 20 most important features in the
XgBoost model for both model specifications.
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Variable Importance
Bicycle Data Fusion Models
(2018+2019 Models)

XgBoost

Total Strava Riders

Total number of jobs 7920 Feet-

Population_5280

Population_2640-

Population_13200-

Number of jobs in NAICS sector 72 (Accommodation and Food Services) 5280 Feet-

Number of jobs in NAICS sector 54 (Professional, Scientific, and Technical Services) 7920 Feet-
Number of jobs in NAICS sector 54 (Professional, Scientific, and Technical Services) 13200 Feet-
Number of jobs in NAICS sector 54 (Professional, Scientific, and Technical Services) 10560 Feet-
Number of jobs in NAICS sector 48-49 (Transportation and Warehousing) 5280 Feet-

Number of jobs in NAICS sector 31-33 (Manufacturing) 7920 Feet

Number of jobs in NAICS sector 22 (Utilities) 10560 Feet-

Number of jobs in NAICS sector 11 (Agriculture, Forestry, Fishing and Hunting) 23760 Feet

Spec

I All + Strava
Al

Feature

Number of jobs for workers with Sex: Male15 7920 Feet-

Number of jobs for workers with Race: Asian Alone15 5280 Feet-

Number of jobs for workers with Race: American Indian or Alaska Native Alone 7920 Feet-

Number of jobs for workers with Ethnicity: Not Hispanic or Latino 7920 Feet-

Number of jobs for workers with Ethnicity: Hispanic or Latine15 5280 Feet

Number of jobs for workers with Educational Attainment: High school or equivalent, college 7920 Feet-
Number of jobs for workers with Educational Attainment: Bachelor's degree or advanced degree 7920 Feet
Number of jobs for workers age 55 or older 7920 Feet-

Number of jobs for workers age 55 or older 5280 Feet-

Number of jobs for workers age 30 to 54 7920 Feet-

Bike_Centrality_Commute-

Figure 8.21: Variable importance for select bicycle data fusion models

External validation tests are performed using both a 10-fold and a leave-one-out (LOO) process.
The purpose of the external validation tests are twofold with the first motivation looking to
understand in more detail the prediction error by volume bin and functional classification which
is not possible to extract from the internal cross validation results. The second motivation is to
try and determine how much the model results might be biased by spatial autocorrelation making
earlier test results somewhat biased because sites used in training may be near tests where the
model is applied. To control for this, the LOO cross validation only uses sites in the training that
are at least 1,000 feet from the test site.

Results from the external 10-fold cross validation analysis are presented below in Figure 8.22
and shows the median absolute percent error by volume bin for the two model specifications (A4//
and All + Strava) and both algorithm types. These results demonstrate that XgBoost model
works better than the random forest with in both specifications with 84% 87% error for the A/l +
Strava and All models respectively and 115% and 113% using the random forest algorithm. The
addition of Strava data to the training features seems to make modest improvement in the median
APE for all models and in all volume bins. The best model is the XgBoost using the A// +
Strava specification with 84% error. In this model the error varies depending on volume bin
with the lowest volume bin exhibiting the highest error of 240% for the XgBoost and the lowest
error in the 11-20 bin with 34% error.
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Absolute Percent Error by Volume Bin
Bicycle AADT
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Figure 8.22: External 10-fold cross validation for bicycle models

Because the XgBoost algorithm worked best based on the internal validation and the 10-fold
external validation the LOO cross validation process only tested this approach. The A/l + Strava
specification was selected for the LOO process due to its better performance the earlier
validation tests. Table 8.14 summarizes the results of the LOO cross validation. These
validation tests ensure that sites near a validation site are not included in the estimation by only
using sites outside a 1,000 buffer. Performing tests this way helps to reduce bias in the cross
validation results with mean error of the LOO external validation rising to 80% from 19% mean
APE in the 10-fold process summarized above. Error was lowest in the 21-40 volume bin with
just 34% and highest in the lowest volume bin with 228% mean APE.

Table 8.14: External Leave-One-Out Cross Validation Results for Vehicle Model

Algorithm Type Volume Bin Absolute Percent Error Number of
Sites
Mean Median

XgbBoost 1-10 228% 169% 19
XgbBoost 11-20 40% 25% 23
XgbBoost 21-40 34% 28% 32
XgbBoost 41-80 56% 59% 13
XgbBoost 81-200 61% 68% 5

XgbBoost All Sites 80% 44% 92
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8.6.2 Statistical Bicycle Traffic Data Fusion Model Cross-Validation Results

This section will describe the development of statistical models to estimate bicycle AADT
including an exploration of the individual effects of the covariates used in the final model. Since
the number of available covariates for estimating a statistical model for bicycle traffic are
numerous it was necessary to use a testing procedure to determine the variables with the best
model prediction accuracy. This process uses 10-fold cross-validation to test the prediction
accuracy of thousands of possible model specifications. Identical to the process used in the
vehicle model development above, a large number of specifications are tried though in the
bicycle model the total was much greater and included 497,664 possible specifications based on
a grid of all possible combinations of select variables including population access, total
employment access, retail, health, and warehouse workers, intersection density, auto centrality,
shortest path centrality a two measures of the Strava data including the total rider counts and the
proportion of the Strava rider counts that were tagged as commute. All the accessibility
measures use shortest network distance thresholds of either one-quarter mile, half-mile, or one
and a half miles. All models are estimated using a negative binomial regression specification
due the counts data featuring over dispersion where the dependent variable (bicycle AADT)
variance is greater than the mean of the counts which is generally the case for traffic counts data.

A custom process was developed in R where for the 2018/2019 counts period data is partitioned
into 10 folds using a stratified random sample ensuring functional classification and bike facility
designations are equally distributed among the folds. A negative binomial regression model is
estimated on each of the k-1 groups (training data) and then estimated on the k-9 (test data) and
then compared to the observed data. To do this for all 497,664 models the total runtime is 6.9
hours even using parallel processing. For each selection of variables three performance metrics
are computed include RMSE, mean absolute percent error (MAPE) and adjusted r-squared.
Based on these metrics models top performing models are selected for further examination. For
the bicycle models the final estimated parameters are presented in Error! Reference source not
found. for three select models using these model performance measures. Model results below
present the estimated coefficient and the associated standard error and p-value for selected
models with the highest r-squared, the lowest RMSE, and lowest MAPE for 2018+2019 data.

These results show that many of the covariates are correlated with an increase in bicycle traffic
including the presence of off-street path, total job and retail job access, bike centrality
(commute), and Strava riders and the proportion of Strava riders flagging their trip as commute.
Features associated with a decreased traffic volume include population access and access to jobs
with less than a high school education access and functional classification. Functional
classification was selected in the in the Lowest RMSE and Highest R-squared models and is
operationalized as a factor variable with the reference set as off-street path. The coefficients for
this variable reveal that compared to off-street path facilities, highways and minor arterials have
the biggest effect on reducing bicycle volume followed by local streets and minor arterials. The
effect of the local streets is surprising and might be capturing some of the lack of connectivity of
the local streets network but that effect would ideally be captured with the centrality measures.
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Table 8.15: Regression Results for Bike Model

Coefficient | Std. |z value | P-value Variable Year Metric
Error
0.0001594 [1.10E-04|1.4463 |0.1481 |Total number of jobs 7920 Mi. 2018+2019({Highest R-
-0.0017 |[1.53E-03|-1.1406 |0.2540 |Number of jobs for workers with Squared
Educational Attainment: Less than
high school 7920 Mi.
2.29E-04 |5.97E-05|3.8308 |0.0001 |Bike Centrality Commute
7.13E-04 (2.24E-04|3.1795 (0.0015 |[Strava Commute Riders
-1.41E-04 |4.65E-05(-3.0343 |0.0024 [Bike Centrality Rec
-0.6525 |0.2647 |-2.4645 |0.0137 |Local (Reference - Off-street path)
-0.3264 |0.1960 |-1.6654 |0.0958 |Collector
-0.8497 |0.1766 |-4.8106 [0.0000 |Minor arterial
-0.6418 |0.2484 [-2.5836 |0.0098 |Major arterial
-1.2156 |0.3888 |-3.1264 |0.0018 |Highway
-0.0462 |0.1812 [-0.2548 |0.7989 |No Facility (Reference - Bike Lane)
1.62E-04 |1.16E-04(1.4023 |0.1608 |Total number of jobs 7920 Mi. 2018+2019|Lowest
6.82E-07 [9.01E-06|0.0757 (0.9397 |Population 2640 RMSE
-0.0018 |0.0016 |-1.1111 [0.2665 [Number of jobs for workers with
Educational Attainment: Less than
high school 7920 Mi.
2.28E-04 [6.04E-05|3.7806 [0.0002 |[Bike Centrality Commute
7.12E-04 |(2.25E-04|3.1585 [0.0016 |[Strava Commute Riders
-1.41E-04 |4.71E-05(-2.9905 |0.0028 |Bike Centrality Rec
-0.6553 |0.2674 |-2.4507 |0.0143 |Local (Reference - Off-street path)
-0.3258 |0.1960 |-1.6622 (0.0965 |Collector
-0.8511 |0.1793 |-4.7462 |0.0000 [Minor arterial
-0.6408 |0.2486 |-2.5779 [0.0099 |Major arterial
-1.2132 |0.3911 |-3.1020 |0.0019 |Highway
-0.0455 |0.1817 |-0.2502 (0.8024 |[No Facility (Reference - Bike Lane)
2.47E-04 |1.18E-04{2.0849 [0.0371 |[Total number of jobs 7920 Mi. 2018+2019|Lowest
9.19E-06 (5.95E-06|1.5452 (0.1223 |Population 5280 MAPE
-3.19E-03 [1.66E-03(-1.9210 |0.0547 |Number of jobs for workers with
Educational Attainment: Less than
high school 7920 Mi.
6.33E-04 (4.21E-041.5045 |0.1325 |Number of jobs in NAICS sector 44-
45 (Retail Trade) 2640 Mi.
2.58E-04 |6.01E-05(4.3007 [0.0000 (Bike Centrality Commute
7.13E-04 (2.24E-04|3.1846 [0.0014 |[Strava Commute Riders
-1.91E-04 |4.70E-05 [-4.0603 [0.0000 (Bike Centrality Rec
-0.0476 |0.1578 |-0.3016 |0.7629 |No Facility (Reference - Bike Lane)
0.6914 |0.1623 |4.2610 [0.0000 |Off-street path
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The bicycle facility variable is also operationalized as a factor variable with the bike lane set as
the reference and is used in all models. In the models with functional classification the oft-street
paths are included and so do not show up in the coefficient table whereas in the Lowest MAPE
model functional classification is not used so the result for off-street path is shown. In either
specification the lack of bike facility is correlated with lower bicycle volumes.

Not all variables are significant within the 0.05 level of significance but about three-quarters of

the variables in each of the statistical model scenarios are significant at the 0.10 level. Table
8.16 below summarizes the three select models error measures.
Table 8.16: Summary Information for Bicycle Regression Model
Specification Performance | MAPE RMSE Adjusted
Metric R-Squared
C000_7920 + CDO01_7920 + Highest R- 93.7% 21.42 0.498
Bike_Centrality Commute + Squared
Commute_Counts +
Bike_ Centrality Rec + Fc¢_Desc +
Bike Facility
C000_7920 + Population 2640 + Lowest 94.7% 21.39 0.496
CDO01_7920 + RMSE
Bike Centrality Commute +
Commute_ Counts +
Bike Centrality Rec + Fc_Desc +
Bike Facility
C000_7920 + Population_5280 + Lowest 86.2% 24.4 0.348
CDO01_7920 + CNS07_2640 + MAPE
Bike Centrality Commute +
Commute_Counts +
Bike Centrality Rec + Bike Facility

The 10-fold holdout analysis results are further summarized by volume detailing the median
APE for each of the models. The model with the lowest median APE for all sites is the same
model with the lowest mean APE, as would be expected, and is better by about 4 percent overall
median APE. The Lowest MAPE model has lower error in all the volume bins except for the 1-
10 and 81- 200 volume bins.
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Median Absolute Percent Error by Volume Bin
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Figure 8.23: Top bicycle regression model median absolute percent error by volume bin

8.6.3 Select Bicycle Data Fusion Model Application

A primary objective of this research is to develop an estimation framework to apply network
wide that will provide information about nonmotorized travel activity for the entire study area.
This section will summarize the application results of select bicycle data fusion models by
applying the models to the entire network in order to generate system wide bicycle activity
estimates. Additionally, an approach is suggested to handle over inflated counts on low volume,
low density residential streets that make up significant lane miles of most urban networks. The
issues and a proposed solution will be discussed below.

As summarized in Table 8.11 above, there are over 650 miles of network in the study region
transportation system, including nearly 129 miles of bicycle lanes and over 50 miles of off-street
paths. A prime objective of this research is deploying the models estimated and validated above
on the entire system in order to estimate a system wide measure of bicycle activity. The results
below in Table 8.17 show the total annual bicycle miles estimated using the XgBoost algorithm
and the selected regression models. These results show that in the first estimate period using
counts from 2017 and 2018 (2017+2018), the estimated total bicycle miles traveled in the study
region was 5.22 and 5.54 million miles for the A// + Strava and A/l machine learning models
respectively. The regression model estimates are 5.20, 5.14, and 5.18 million miles for Highest
R-Squared, Lowest MAPE and Lowest RMSE models respectively in the 2017+2018 estimation
period. For the second estimate period, from 2018 and 2019 (2018+2019) the total BMT
estimate is 4.44 and 4.84 million miles for the A/l + Strava and All machine learning models
respectively.
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Table 8.17: Total Bicycle Miles Traveled for Select Models

Model Algorithm | Total Annual Bend Per Year

Specification Type Bicycle Miles Population Capita
Traveled BMT

All + Strava XgbBoost | 5,225,730 96,058 0.15 2017+2018

4,444,592 99,171 0.12 2018+2019

All 5,544,053 96,058 0.16 2017+2018

4,847,462 99,171 0.13 2018+2019

Highest R- Negative | 5,203,217 96,058 0.15 2017+2018

Squared Binomial | 3,828,137 99,171 0.11 2018+2019

Lowest MAPE 5,141,664 96,058 0.15 2017+2018

3,861,726 99,171 0.11 2018+2019

Lowest RMSE 5,187,065 96,058 0.15 2017+2018

3,825,118 99,171 0.11 2018+2019

The estimates from the regression models are within 1% of one another in both estimation
periods. The machine learning model that uses Strava as a training feature appears to moderate
the total estimate for the 2017/2018 period by about 6% and 2018/2019 period by 9 % compared
to the 4/ model that does not use this training feature. This might be expected considering the
Strava feature is not present on most local roads and so moderates estimated volume on those
facilities. Considering local roads make up over 60% of the network this moderation can have a
significant impact on total BMT.

Figure 8.24 below displays the total annual BMT estimates by selected model scenario and
shows that the BMT summary aggregated by functional classification and bicycle facility for a
Strava + All machine learning model and the Lowest MAPE regression model. Lowest MAPE is
selected because MAPE was the performance measure used to select which of the machine
learning model specifications to focus on. The figure below shows that many BMT estimates are
similar though some significant differences exist including the local streets where no bike facility
exists. The All + Strava machine learning model estimates 3.29 and 2.72 million BMT for the
two estimation periods while the regression model only estimates 3.03 and 2 million BMT in
each estimation period. The 2018+2019 estimation period is different by just over one million
BMT which seems significant.
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Total Bicycle Miles Traveled for Selected Machine Learning Algorithm Scenarios
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Figure 8.24: Bicycle miles traveled estimates for selecteds by bicycle facility type and
functional classification

Of note is the significant number of BMT that are being estimated on the local road system. The
local road system, even without a bicycle facility may be an attractive facility for people to
bicycle due to its low vehicle and speed and volume and relative proximity to residential areas
(population access) and parks. However, many of these streets are likely to have zero counts
given their low accessibility to key destinations and because of the nature of the traffic count
programs where streets with likely bicycle users were counted, the available counts are likely
biased upwards and using them in a network wide application is likely biasing the total BMT
results upward. In order to handle this issue, a proposed solution is offered where zero counts
locations are introduced into the counts data at locations where zero bicycle traffic is likely. The
criteria for the random selection of these zero count locations are described below:

e Local street functional classification with no bicycle lane
e Population access within 0.5 miles must be 400 people or less
e Bicycle centrality must be zero
e No Strava rider counts
Using this criteria about 41 miles or 10% of the local street network, become eligible for having

a zero count assigned to it. Ofthese local streets, 30 links are randomly selected and those 30
locations are added to the counts data and the machine learning algorithms are retrained with the
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inclusion of the simulated zero counts data. The remainder of this section will detail the BMT
results of the modeling with the inclusion of these randomly selected zero count locations.

With the introduction of the zero counts the distribution of the data is altered and the negative
binomial model is no longer appropriate and instead a Poisson model is used to estimate the
model using the simulated zero counts. Future research should explore the use of zero inflated
hurdle models to see if that specification changes the final BMT results. With about 25% of the
counts now being zeros it’s likely this would be a more proper specification. Table 8.18 below
details the results for the new BMT estimate scenario where 30 zero count locations were
inserted into the model training data. On an aggregate basis, the total BMT decreases to 65% of
initial estimate for the 2017/2018 estimation period, and 67% for the 2018/2019 estimation
period when estimated using the XgBoost machine learning algorithm with the All + Strava
specification. Using the Poisson regression approach but including the simulated zeros the
estimated BMT drops 55% of initial estimate for the 2017+2018 estimation period and 71% for
the 2018+2019 estimation period.

Table 8.18: Total Bicycle Miles Traveled Comparison with Simulated Zero Counts
Scenario

Model Type and Estimation | Total Annual Bicycle Miles Traveled Percent
Specification Periods No Zero Simulated Zero Difference
Counts Counts
Machine Learning: | 2017+2018 | 5,225,730 3,385,390 65%
All + Strava 2018+2019 | 4,444,592 2,985,239 67%
Regression: Lowest | 2017+2018 | 5,141,664 2,803,758 55%
MAPE 2018+2019 | 3,861,726 2,727,744 71%

Figure 8.25 below details the aggregate BMT by functional classification and bicycle facility for
both modeling approaches (machine learning vs. regression) and without simulated zero counts
and with those simulated zero counts. The insertion of zero counts into the machine learning
training data depress the estimated BMT for the local streets with no bike facility, as designed,
reducing the estimated BMT on those facilities from 2.72 million BMT to 1.21 million BMT for
the 2018/2019 estimation period, a reduction of roughly 55 percent. When the zero counts are
included in the regression model approach the BMT on local streets with no bike facility goes
from 2 million BMT to 1.21 million for the 2018/2019, a change of about change is about 40%
percent. Most facility types have a diminished BMT estimate in both periods but highway
facilities with bike lanes see a marginal increase in the machine learning model.
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Total Bicycle Miles Traveled for Selected Machine Learning Algorithm Scenarios
No Zero Counts vs. Simulated Zero Counts
2018+2019 Only
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Figure 8.25: Bicycle miles traveled estimates comparison of zero counts scenario by bicycle
facility type and functional classification

The insertion of zero counts at locations with low density and low network connectivity appear
to have the desired effect of moderating the overall BMT estimates. Figure 8.26 and Figure 4.25
below shows the results of the network wide application of both model approaches and the
scenarios using counts data and counts data with simulated zeros. The left panel shows the
results of the model applied to the network with all observed data while the right panel shows the
model with simulated zero counts at low density locations. Where as in the left panel there are
no locations where zero counts are estimated (denoted by grey) while the right hand panel shows
a small number of links in far flung parts of the network with no estimated bicycle activity.
Additionally, the simulated zero counts scenario moderates bicycle volumes throughout the low
density areas surrounding the core of the study region, with many more links in the 1-5 AADT
volume bin. In fact there only 11 links in the No Zero Counts scenario with 1-5 bicycle AADT
while in the Simulated Zero Counts scenario there are 4,074 links with volume in this range for
the XgBoost based model.

Even though the aggregate measure of BMT similar, different by only 15% between the two
model approaches in the 2018+2019 period, the network level estimates reveal a number of
differences. The XgBoost model appears to spread the activity out in the downtown area while
the regression model targets the activity to a discrete corridors. Those corridors are more
pronounced in the scenarios where the zero counts were injected into the training data. The
XgBoost results do create about 30 links where the estimate is a negative value which are then
converted to a zero for the purposes of aggregation and network visualization.
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The table below presents some summary statistics of the estimated bicycle volumes on the
14,000 links that make up the study region network and which were presented below in Figure
8.26 and Figure 8.27 via map. As expected the mean estimated summary statistics all decrease
with the injection of simulated zero counts with the XgBoost model estimating a negative values
on about 30 links, which are converted to zero.

Table 8.19: Summary Statistics of Estimated Counts for Total Network Application of

Bicycle Fusion Models

Model Scenario Estimated AADT Summary Statistics
Specification Minimum | Maximum | Mean Median Std. Dev.
All + Strava | No Zero | 2.2 142 19 16 10

Lowest | Counts 63 165 15 13 9

MAPE
All + Strava | Simulated | 0* 141 12 9 13

Lowest Zero 4.4 150 11 7 10

MAPE Counts

*30 links had an estimated AADT of between -0.6 & 0.0005 and were assigned a zero value
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Figure 8.26: XgBoost - comparison of bicycle miles traveled scenarios — network level estimates
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8.6.4 Bicycle Data Fusion Discussion

The above section detailed the data, estimation procedures, validation, and results of data fusion
models for bicycle traffic volumes in the study region. The validation results showed that the
XgBoost machine learning algorithm worked better than random forest across three separate
cross-validation procedures that tested the different machine learning algorithms. In order to
specify a regression model, nearly 500,000 models are estimated and tested using 10-fold cross
validation. Of these models top performing models based on MAPE, r-squared, and RMSE are
selected for further examination. These validation tests also showed that including the Strava
data helped to improve model accuracy, albeit only marginally in the machine learning tests
though the Strava variable was found to be important in all of the regression models.

In the case of the machine learning model application on the entire network in order to produce a
BMT estimate, the specification with Strava data feature appeared to be useful, helping to
moderate overall activity estimates. However, using just the observed data in the data fusion
models is likely biasing the BMT estimate upward, due to the selection of count locations where
bicyclists are expected. To handle this bias, an approach is suggested whereby zero counts are
injected into the training data at locations where zero bicycle riders would be expected. The
results of this approach present the expected outcomes, further moderating estimated bicycle
activity across the network, especially at locations a high likelihood of low bicycle ridership.
Continued discussions are necessary with potential model users about an application ready
bicycle data fusion model so model users completely understand the advantages and limitations
of using either of the models examined in this research as tradeoffs exists.

The use of machine learning in estimating network wide bicycle activity is novel, based on the
current status of the literature. Machine learning offers significant advantages for predicting
important quantities such as bicycle volumes where inferential data is less important for model
users. Additionally, the selected machine learning algorithms offer powerful mechanisms for
accounting for the interaction of many complicated relationships between network variables and
are likely important tools for monitoring the system and understanding network wide activity.

However, the results from the application of the machine learning model seem less reasonable
that the regression model, spreading demand across the downtown area instead of focusing the
activity to certain corridors. It’s likely that with many fewer features in the training data for the
regression models, the centrality and strava features have more impact than the machine learning
approach where the effect might be getting washed out some by the large number of employment
features.

Either of these model approaches will only improve as more data is collected and the data
collected and fed into the model estimation process. Additionally, model results would be
improved with updated data for certain data elements. For instance, the decrease in bicycle miles
traveled from the first estimation period to the second could be because the employment data
used in training and application was a single year, representing 2017 since 2018 data has yet to
be released by Census Bureau. Other data from LEHD could be harnessed, including origin-
destination information that connects worker residential locations and their place of work. A
major issue in the training feature data is the use of population data from 2011. These data were
used because of their ease of availability but more updated data from American Community

98



Survey could be used to better reflect the conditions when traffic counts were collected. Other
model estimation and application improvements could be to evaluate the Strava data in more
detail and correct places where potential issues are present. Strava also offers an origin-
destination product that could be useful however in order to completely take advantage of these
data a larger travel shed would likely be needed that expands beyond the boundaries of the urban
area. It’s generally accepted that a lot of the bicycle activity in the Bend study area is related to
recreational travel and Bend’s proximity to path and trail networks outside the urban area. One
reason the cross validation results are lower than the vehicle models is because this out of area
travel is not accounted for in any of the access measures.

8.7 PEDESTRIAN TRAFFIC DATA FUSION MODEL

The results of the pedestrian data fusion models will be presented in four sections below. The
first section will describe and summarize the machine learning based data fusion models
including the features used and the cross-validation results. The second section will describe and
summarize the regression based data fusion models including the final model covariates and
results of the cross-validation results. For the machine learning and regression approaches root
mean squared error (RMSE), absolute percent error, and r-squared values are used to measure
model performance. The third section will then compare total pedestrian miles traveled
estimates when applying select models to the entire network. In addition the third section will
discuss an approach to handling upwardly biased estimates of bicycle traffic on low density local
streets. The fourth section summarizes these results and offers a discussion about the two
methods.

8.7.1 Data Description for Pedestrian Traffic Fusion Models

A number of features used in the pedestrian data fusion model are described in the section below.
Figure 8.28 shows the overall data fusion schema and presents key network features used to train
the pedestrian data fusion model. As noted above in the vehicle and bicycle model data
description, this schema representation does not show all features used, for instance the access to
jobs feature shown in the figure below actually has over 600 different versions when all worker
industry, demographic, and access threshold combinations are computed.
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Figure 8.28: Pedestrian data fusion model schema

Table 8.20 below summarizes the AADT estimates for pedestrian traffic by functional
classification for two time periods denoted below as 2017+2018 and 2018+2019. These period
represent average volumes for each year denoted in count locations where counts are available
for both years. These averages are constructed and presented below to take advantage of as
much of the counts data as possible for data fusion modeling and are used in place of applying a
growth factor. Observations from the table below show that median pedestrian traffic volumes
on off-street paths are higher than other streets followed by local streets, minor arterials, and
principal arterials with collectors demonstrating the least pedestrian volume. The counts appear
to be trending slightly upward for each facility type across aggregation periods.
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Table 8.20: Bicycle Traffic Count Summary

Functional Year Pedestrian AADT Summary Data
Classification Minimum | Mean | Median | Std. | Max | Observations
Dev.
Off-street 2017+2018 | 15 267 144 286 | 900 |14
2018+2019 | 19.5 263 170 256 | 808 |14
Local 2017+2018 | 62 83 79 233 | 108 |3
2018+2019 |9 59.8 |62 31.6 (103 |9
Collector 2017+2018 | 3 13.7 | 134 10.8 |25 4
2018+2019 |3 157 | 153 8.82 1265 |5
Minor Arterial | 2017+2018 | 11.5 57.2 [ 40.5 49.1 | 163 |16
2018+2019 | 11.5 72.5 | 475 61.3 | 234 |21
Principal 201742018 |7 75.5 |50 68.2 206 |7
Arterial - Other | 2018+2019 | 12.8 76.1 | 58.8 644 (196 |7
All Sites 2017+2018 | 3 99.2 |50 113.1 [ 900 | 44
2018+2019 |3 97.4 | 58.8 98.6 | 808 |56

Pedestrian traffic have been collected at nearly 60 locations over the three years where data was
actively collected. Those locations are displayed below in Figure 8.29. Many of the locations
are on facilities where pedestrian users would be expected to use and thus inserts a certain
amount of bias where the model would likely be biased upward, especially at sites with very low
or zero pedestrian activity. Later in the report an approach is proposed to handle the issue of
having no zero counts in the observed pedestrian traffic counts data. Another feature shown in
Figure 8.17 is the bicycle specific network elements including the location of bicycle lanes and
off-street paths. These will also be used in the model training process.
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Figure 8.29: Pedestrian count locations

Unlike with the vehicle and bicycle network system data, this research does not have access to
high quality network data for the pedestrian system, other than the off-street path network data.
The presence of sidewalk information is available in a regional data set but is not used in this
research. Pedestrian network data such as sidewalk quality and width as well as crossing
treatments like mid-block crossing and cross walk type would be ideal features to use in the
pedestrian models.

Most of the training features in the pedestrian model are also used in the other user type models
but one training feature novel to the pedestrian models is the access to transit stops. A preferable
transit related metric would be to use transit ridership but those data were not available at the
time of the publication of this report. However, Figure 8.28 below shows the transit stops
accessible within one-half mile walk and represents an access to transit measure. Transit access
was developed using multiple thresholds from one-half mile to six miles in half-mile increments.
These distance measures are network based using shortest path assumptions, not buffer or
Euclidean based. Figure 8.30 shows the areas of the study region where transit access is
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available highlighting the density of access in the core of the region and revealing that much of
the network has no access to transit within one-half mile walk trip. These transit access
measures do not account for frequency of service or other service quality measure.
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Figure 8.30: Transit stops accessible within 2 mile walk

Other data used in the pedestrian data fusion model mirror those used in the bicycle models and
can be reviewed in the section above describing those features.

8.8 PEDESTRIAN TRAFFIC DATA FUSION MODEL RESULTS

The results of the pedestrian data fusion models will be presented in three sections below. The
first section will describe cross-validation procedures and the model specifications for each
model presented in this section. The second section will summarize the internal and external
cross-validation processes which use information including root mean squared error (RMSE) and
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r-squared values to measure model performance. Additionally in this section, the top ten most
important features will be presented from the full model estimation. The third section will then
apply selected models across the network in order to examine model performance. This section
will also detail a proposed method to handle the bias in pedestrian traffic counts data due to the
lack of zero counts being collected but surely exist at some locations on the network. A
comparison of aggregate network wide estimates of pedestrian activity will be performed to
assess the performance of the modeling approaches.

8.8.1 Machine Learning Based Pedestrian Traffic Data Fusion Model Cross-
Validation Results

This section summarizes the cross validation procedures applied in the pedestrian data fusion
model development element of this research as well as describes the features used in each of the
machine learning algorithms. Similar to the vehicle and bicycle model training, cross-validation
was done through both an internal and external cross validation. The results presented below are
based on two machine learning algorithms including extreme gradient boosting (XgBoost) and
random forest. Two sets of cross validation are performed, one that is characterized as internal
that uses random partitions in a 10-fold cross validation and is done as a part of the model
training process within the caret package. The second cross validation process, characterized as
external, is performed on a select set of model specifications worthy of further investigation from
the first validation and uses a stratified partition to do another 8-fold cross-validation. Eight
folds are used because the data set is too small when trying to partition based on a specified
stratification using functional classification and with 10 folds some partitions do not have all of
the functional classifications making application the training data impossible. The internal cross
validation uses 10 folds and was performed twice. Multiple model specifications are tested in
the internal validation step using two type of algorithms (XgBoost and Random Forest) with a
set of selected model specification being put forward to the external cross validation process.

Diagnostic information includes RMSE and r-squared values while the number of features used
in the model is also presented. The internal validation results are a product of the initial model
training using the caret package in R and uses a random partitioning process, using 10 folds and
performed two times. The results displayed below in Table 8.21 summarize the internal cross
validation tests and show that the XgBoost algorithm and random forest algorithm are similar in
performance with a minimum r-squared value of 36% for XgBoost versus a 39% in the random
forest. The maximum r-squared value for XgBoost is 53% while the maximum for random
forest was 53 percent. The number of features used in the XgBoost is generally fewer than the
random forest with at most 208 features while the random forest used nearly double with as
many as 527 features being used. The impact of using Strava data denoted by A/l + Strava is not
consistent across model estimations. Using the random forest algorithm, the Strava data does not
improve the model as measured by r-squared but does reduce RMSE in the 2017+2018
estimation period. For the XgBoost algorithm, r-squared and RMSE is improved for the
2017+2018 estimation period.
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Table 8.21: Internal Cross Validation Results for Vehicle Model

Algorithm
Specification

RMSE R-

squared

Algorithm

Year

Feature
Count

All + Strava

122.9 49%

Random Forest

527

2017+2018

All + Strava

129.6 39%

Random Forest

527

2018+2019

All 138.1 51%

Random Forest

524

2017+2018

All 128.4 53%

Random Forest

524

2018+2019

All + Strava

139.8 53%

XgBoost

2017+2018

All + Strava

129.3 36%

XgBoost

2018+2019

All 148.6 51%

XgBoost

2017+2018

119.4 44%

All

XgBoost

2018+2019

The top 20 most importance features are displayed below in Figure 8.31 for the A/l + Strava

model for a select year and shows that employment features were commonly important variables
in both model specifications, along with population measures and shortest path centrality
measures. Network features include in the top 20 most important variables are limited to
designation as an off street path and the estimated vehicle volumes.

Feature

Total number of jobs 7920 Feet-
Shortest_Path_Centrality-
Population_31680-
Population_26400-

18480-
Population_15840-

Population_13200-

Population_10560-

Off-street path-

Number of jobs with earnings greater than $3333/month 23760 Feet-

Number of jobs with earnings $1250/month or less 7920 Feet-

Number of jobs with earnings $1250/month or less 15840 Feet-

Number of jobs in NAICS sector 72 (Accommodation and Food Services) 2640 Feet-
Number of jobs in NAICS sector 72 (Accommodation and Food Services) 15840 Feet-
Number of jobs in NAICS sector 71 (Arts, Entertainment, and Recreation) 7920 Feet-
Number of jobs in NAICS sector 71 (Arts, Entertainment, and Recreation) 5280 Feet-
Number of jobs in NAICS sector 71 (Arts, Entertainment, and Recreation) 29040 Feet-
Number of jobs in NAICS sector 62 (Health Care and Social Assistance) 23760 Feet-
Number of jobs in NAICS sector 55 (Management of Companies and Enterprises) 7920 Feet-

Population,

Number of jobs in NAICS sector 55 (Management of Companies and Enterprises) 5280 Feet

Number of jobs in NAICS sector 23 (Construction) 5280 Feet-

Number of jobs in NAICS sector 11 (Agriculture, Forestry, Fishing and Hunting) 18480 Feet-
Number of jobs for workers with Race: White, Alone 18480 Feet-

Number of jobs for workers with Race: Two or More Race Groups 23760 Feet-

Number of jobs for workers with Race: Native Hawaiian or Other Pacific Islander 5280 Feet-
Number of jobs for workers with Race: Native Hawaiian or Other Pacific Islander 10560 Feet-
Number of jobs for workers with Ethnicity: Not Hispanic or Latino 7920 Feet-

Number of jobs for workers with Ethnicity: Not Hispanic or Latino 18480 Feet-

Number of jobs for workers with Ethnicity: Hispanic or Latino15 15840 Feet-

Number of jobs for workers with Educational Attainment: Some college or Associate degree 7920 Feet-
Number of jobs for workers with Educational Attainment: High school or equivalent, college 15840 Feet-
Number of jobs for workers with Educational Attainment: Bachelor's degree or advanced degree 7920 Feet
Number of jobs for workers with Educational Attainment: Bachelor's degree or advanced degree 21120 Feet-
Number of jobs for workers age 55 or older 7920 Feet-
Number of jobs for workers age 55 or older 15840 Feet-
Number of jobs for werkers age 30 to 54 7920 Feet-
Est_Veh_AADT-

Variable Importance
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Figure 8.31: Variable importance for select pedestrian data fusion models

Algorithm

RandomForest
XgBoost

External validation tests are performed using both an 8-fold and a leave-one-out (LOO) process
as was done in the vehicle and bicycle models validation above. An 8-fold test was done
because of the lower amount of data available for the pedestrian model prevented partitioning

into 10 folds. Results from the external 8-fold cross validation analysis are presented below in
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Figure 8.32 and shows the median absolute percent error by volume bin for the two model
specifications (4/l and All + Strava) and both algorithm types. These results demonstrate that
XgBoost model works better than the random forest with in both specifications with having just
57% and 60% error for the All + Strava and All models respectively and 81% and 78% using the
random forest algorithm. The addition of Strava data to the training features seems to make
modest improvement in the median APE for all models and in all volume bins. The best model
is the XgBoost using the A/l + Strava specification. In this model the error varies depending on
volume bin with the lowest volume bin exhibiting the highest error of 251% for the XgBoost and
the lowest error in the 81-160 bin with 34% error.

Median Absolute Percent Error by Volume Bin

Pedestrian AADT
Volume Bin: 1-20 Volume Bin: 21-40 Volume Bin: 41-80
368 % 379 % 160 % 156 % o 56 % 5%
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Figure 8.32: External 8-fold cross validation for bicycle models

Because the XgBoost algorithm worked best based on the internal validation and the 10-fold
external validation the LOO cross validation process only tested this modeling approach.
Because both model specifications (4//; All + Strava) performed about the same both
specifications are tested in the LOO cross-validation. Figure 8.33 summarizes the results of the
LOO cross validation. These validation tests ensure that sites near a validation site are not
included in the estimation by only using sites outside a 1,000 buffer, though due to the
geographic sparseness of the pedestrian data this condition is not hard to attain. Performing tests
this way helps to reduce bias in the cross validation results with median error of the LOO
external validation rising to 66% from 67% mean APE in the 8-fold process summarized above.
Error was lowest in the 81-160 volume bin with just 43% (random forest) and highest in the
lowest volume bin with 297% median APE.
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Figure 8.33: LOO Cross validation for pedestrian models

The last summary below shows estimated AADT compared to observed AADT for both
estimation periods using the full model (without any data withheld) showing the correlation
between the two values. It would be expected that the performance in this summary is high
considering the estimation data is not separate from the application data. In fact, showing model
performance in this way demonstrates the machine learning model does very well in predicting
the observations in its estimation data with a high r-squared and relatively low RMSE.
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Figure 8.34: Correlation of estimated and observed AADT pedestrian traffic

This chart does not show any out of sample predictive capability since all of the data in the
comparison data set are included in the estimation data. However, this comparison shows that
with a full model estimated values are very close the observed data used to train the model. The
full model does appear to do less well with higher AADT values, likely due to the lower number
of observations in those volume ranges

8.8.2 Statistical Pedestrian Traffic Data Fusion Model Cross-Validation
Results

This section will describe the development of statistical models to estimate bicycle AADT
including an exploration of the individual effects of the covariates used in the final model. Since
the number of available covariates for estimating a statistical model for bicycle traffic are
numerous it was necessary to use a testing procedure to determine the variables with the best
model prediction accuracy. This process uses 8-fold cross-validation to test the prediction
accuracy of thousands of possible model specifications. Identical to the process used in the
vehicle and bicycle model development above, a large number of specifications are tried and
included 31,104 possible specifications based on a grid of all possible combinations of select
variables including population access, total employment access, retail, health, and warehouse
workers, intersection density, auto centrality, shortest path centrality a two measures of the
Strava data including the total rider counts and the proportion of the Strava rider counts that were
tagged as commute. The pedestrian model also included transit access measure at various
distance thresholds. All the accessibility measures use shortest network distance thresholds of
either one-quarter mile, half-mile, or one and a half miles. All models are estimated using a
negative binomial regression specification due the counts data featuring over dispersion where
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the dependent variable (pedestrian AADT) variance is greater than the mean of the counts which
is generally the case for traffic counts data.

A custom process was developed in R where for the 2018/2019 counts period data is partitioned
into 8 folds using a stratified random sample ensuring bike facility designations are equally
distributed among the folds, especially the off-street paths. Eight folds are used because the
amount of data is limited and the stratification process limits the number of folds. A negative
binomial regression model is estimated on each of the k-1 groups (training data) and then
estimated on the k-9 (test data) and then compared to the observed data. To do this for all 82,944
models the total runtime is about 12 hours even using parallel processing. For each selection of
variables three performance metrics are computed include RMSE, mean absolute percent error
(MAPE) and adjusted r-squared. Based on these metrics models top performing models are
selected for further examination. For the pedestrian models the final estimated parameters are
presented in Table 8.22 or three select models using these model performance measures. Model
results below present the estimated coefficient and the associated standard error and p-value for
selected models using full data with the highest r-squared, the lowest RMSE, and lowest MAPE
for the 2018+2019 data.

These results shown in Table 8.22 below reveal that many of the covariates are correlated with
an increase in pedestrian traffic including the presence of off-street path facility, shortest path
centrality, total jobs, retail jobs, streets without a bike lane and Strava riders on a commute trip.
Features associated with a decreased traffic volume include warehouse jobs, vehicle volumes and
higher functional classification roads except that the highest classification, principal arterial, has
a positive sign.
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Table 8.22:

Regression Results for Pedestrian Model

Coefficient

Std.
Error

z value

P-
value

Variable

Year

Metric

1.58E-04

0.0000

5.2343849

0.0000

Total number of jobs 5280 Mi.

1.03E-05

0.0000

1.7906993

0.0733

Population_7920

-0.0019

0.0007

-2.5847896

0.0097

Number of jobs in NAICS sector 48-49
(Transportation and Warehousing) 7920 Mi.

6.00E-08

0.0000

1.3289739

0.1839

Shortest Path Centrality

-1.03E-04

0.0000

-2.2675452

0.0234

Est Veh AADT

-1.8150

0.3374

-5.3786179

0.0000

Local (Reference off-street path)

-2.0746

0.3475

-5.9702033

0.0000

Collector

-0.6852

0.4064

-1.6860395

0.0918

Minor Arterial

0.3606

0.8560

0.4212569

0.6736

Principal Arterial - Other

0.6965

0.2517

2.7678192

0.0056

No Bike Lane

2018+
2019

Lowest
MAPE

7.57E-05

0.0000

3.9013077

0.0001

Total number of jobs 7920 Mi.

4.04E-04

0.0006

0.7102569

0.4775

Number of jobs in NAICS sector 44-45
(Retail Trade) 2640 Mi.

-0.0057

0.0018

-3.1146703

0.0018

Number of jobs in NAICS sector 48-49
(Transportation and Warehousing) 2640 Mi.

4.87E-08

0.0000

0.9902439

0.3221

Shortest Path Centrality

-1.04E-04

0.0000

-2.4472025

0.0144

Est Veh AADT

2.44E-04

0.0003

0.7908876

0.4290

Strava Commute Riders

-2.3454

0.3665

-6.3989161

0.0000

Local (Reference off-street path)

-1.9675

0.3476

-5.6605423

0.0000

Collector

-0.9260

0.4068

-2.2766232

0.0228

Minor Arterial

0.5487

0.8030

0.6833119

0.4944

Principal Arterial - Other

1.0425

0.2648

3.9362692

0.0001

No Bike Lane

2018+
2019

Highest
R-
Squared

7.55E-05

0.0000

3.8993362

0.0001

Total number of jobs 7920 Mi.

-6.25E-06

0.0000

-0.543102

0.5871

Population_ 2640

4.41E-04

0.0006

0.7687996

0.4420

Number of jobs in NAICS sector 44-45
(Retail Trade) 2640 Mi.

-0.0058

0.0018

-3.1534368

0.0016

Number of jobs in NAICS sector 48-49
(Transportation and Warehousing) 2640 Mi.

5.09E-08

0.0000

1.0225663

0.3065

Shortest Path Centrality

-9.74E-05

0.0000

-2.2029157

0.0276

Est Veh AADT

2.41E-04

0.0003

0.7811447

0.4347

Strava Commute Riders

-2.3094

0.3744

-6.1680651

0.0000

Local (Reference off-street path)

-1.9950

0.3507

-5.6883413

0.0000

Collector

-0.9484

0.4074

-2.3278852

0.0199

Minor Arterial

0.4291

0.8275

0.5185853

0.6040

Principal Arterial - Other

1.0161

0.2696

3.7695985

0.0002

No Bike Lane

2018+
2019

Lowest
RMSE
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The functional classification variable is operationalized in the models as a factor variable with
the reference set to an off-street path so all coefficient estimates are in reference to this
classification. For instance compare to an off-street path, all else being equal, local streets have
less pedestrian volume but collector streets have even less. The bicycle facility variable is also
operationalized as a factor variable with the bike lane set as the reference and is used in all
models. And since most arterials have a bike lane this variable might be picking up on some of
the vehicle traffic conditions since the results for most models show that compared to streets
with a bike lane, pedestrian traffic is greater on streets without a bike lane (No facility) and off-
street paths.

Not all variables are significant within the 0.05 level of significance but the proportion of
variables that are significant at the 0.05 level ranges from just over half to two-thirds while the
proportion of variables significant at the 0.10 level ranges from about 60% to just over three-
quarters of the variables Table 8.23 below summarizes the three select models error measures.

Table 8.23: Model Diagnostic Information for Bicycle Regression Models

Specification Performanc | MAPE | RMSE | Adjusted R-
e Metric Squared
C000_5280 + Population_7920 + Lowest 88.9% | 88.6 0.708
CNS08_7920 + MAPE

Shortest Path Centrality +
Est Veh AADT + Fc_Desc +
Est AADT + Bike Facility

C000 7920 + CNS07_2640 + Highest R- 111.2% | 71.93 0.804

CNSO08 2640 + Squared
Shortest Path Centrality +

Est Veh_ AADT + Commute Counts +

Fc¢ Desc + Est AADT + Bike Facility

C000_7920 + Population_2640 + Lowest 113.0% | 71.89 | 0.799
CNSO07 2640 + CNS08 2640 + RMSE
Shortest_Path_Centrality +
Est_Veh_AADT + Commute_Counts +
Fc¢ Desc,Est AADT + Bike Facility

The 10-fold holdout analysis results are further summarized by volume detailing the median
APE for each of the models. The model with the lowest median APE for all sites is the same
model with the lowest mean APE (Lowest MAPE), as would be expected, and has lower median
APE than the next model by about 4 percent. The Lowest MAPE model has lower error in all
the volume bins except for the 11-20 and 601- 810 volume bins.
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Median Absolute Percent Error by Volume Bin
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Figure 8.34: Top pedestrian regression model median absolute percent error by volume bin

8.8.3 Select Pedestrian Data Fusion Model Application

A primary objective of this research is to develop an estimation framework to apply network
wide that will provide information about nonmotorized travel activity for the entire study area.
This section will summarize the application results of select pedestrian data fusion models by
applying the models to the entire network in order to generate system wide bicycle activity
estimates. Additionally, an approach is suggested to handle over inflated counts on low volume,
low density residential streets that make up significant lane miles of most urban networks. The
issues and a proposed solution will be discussed below.

A prime objective of this research is deploying the models estimated and validated above on the
entire system in order to estimate a system wide measure of pedestrian activity. The results
below in Table 8.24 show the total annual pedestrian miles estimated using the XgBoost
algorithm and the selected regression models. These results show that in the first estimate period
using counts from 2017 and 2018 (2017+2018), the estimated total pedestrian miles traveled in
the study region was 18.3 and 17.3 million miles for the A// + Strava and All machine learning
models respectively. The regression model estimates are 16.96, 11.4, 16.90 million miles for
Highest R-Squared, Lowest MAPE and Lowest RMSE models respectively. For the second
estimate period, from 2018 and 2019 (2018+2019) the total PMT estimate is 15.9 and 15.2
million miles for the A// + Strava and All machine learning models respectively. The regression
model estimates are 14.1, 13.8, and 13.9 million miles for the Highest R-Squared, Lowest MAPE
and Lowest RMSE models respectively.
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Table 8.24: Total Pedestrian Miles Traveled for Select Models

Model Algorithm | Total Annual Bend Per Year
Specification Type Pedestrian Population | Capita
Miles Traveled BMT

All + Strava | XgbBoost | 18,338,312 96,058 0.52 2017+2018

15,876,191 99,171 0.44 2018+2019

All 17,300,492 96,058 0.49 2017+2018

15,220,786 99,171 0.42 2018+2019

Highest R- | Negative 17,007,324 96,058 0.49 2017+2018

Squared | Binomial | 14,009,875 99,171 0.39 2018+2019

Lowest MAPE 11,393,385 96,058 0.32 2017+2018

13,758,836 99,171 0.38 2018+2019

Lowest RMSE 16,958,069 96,058 0.48 2017+2018

13,921,306 99,171 0.38 2018+2019

The estimates from the regression models for the 2017+2018 study period deviate somewhat
substantially, especially in the case of the Lowest MAPE model that is about one-third less the
other regression model. There is more consistency in the latter study period models with all the
result being within 3% of one another. The machine learning model that uses Strava as a training
feature appears to increase the total estimate for the 2017/2018 period by about 6% and
2018/2019 period by 4 % compared to the 4// model that does not use this training feature. It’s
not clear how why the machine learning algorithm is making use of the Strava data but has
demonstrated in the cross-validation model accuracy improve when using Strava data and the
Lowest RMSE regression model also uses a measure derived from Strava data.

Figure 8.35 below displays the total annual PMT estimates by selected model scenario including
the A/l + Strava machine learning model and the Lowest MAPE regression models. These
specifications were chosen for their performance in low APE. These results show that the BMT
summary aggregated by functional classification for a Strava + All machine learning model and
the Lowest MAPE regression model. Lowest MAPE is selected because MAPE was the
performance measure used to select which of the machine learning model specifications to focus
on and so was followed for the selection of regression models. The figure below shows that
PMT estimates are higher in the application of the machine learning models on half the
functional classifications including the local, collector, and minor arterial streets whereas the
regression model estimates higher PMT on off-street paths, major arterials, and highways. The
collector classification has the largest percentage difference followed by off-street paths.
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Figure 8.35: Pedestrian miles traveled estimates for selected scenarios by functional
classification

Of note is the significant number of PMT that are being estimated on the local road system. The
local road system may be an attractive facility for people to walk due to its low vehicle and speed
and volume and relative proximity to residential areas (population access) and parks. However,
many of these streets are likely to have zero counts given their low accessibility to key
destinations and because of the nature of the traffic count programs where streets with likely
pedestrian users were counted, the available counts are likely biased upwards and using them in a
network wide application is likely biasing the total PMT results upward. In order to handle this
issue, a proposed solution is offered where zero counts locations are introduced into the counts
data at locations where zero pedestrian traffic is likely. The criteria for the random selection of
these zero count locations are described below:

e Local street functional classification with no bicycle lane
e Population access within 0.5 miles must be 400 people or less
e Shortest path centrality must be zero
e No Strava rider counts
Using this criteria about 41 miles or 10% of the local street network, become eligible for having

a zero count assigned to it. Of these local streets, 30 links are randomly selected and those 30
locations are added to the counts data and the machine learning algorithms are retrained with the
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inclusion of the simulated zero counts data. The remainder of this section will detail the BMT
results of the modeling with the inclusion of these randomly selected zero count locations.

With the introduction of the zero counts the distribution of the data is altered and the negative
binomial model is no longer appropriate and instead a Poisson model is used to estimate the
model using the simulated zero counts. Future research should explore the use of zero inflated
hurdle models to see if that specification changes the final BMT results. With about 25% of the
counts now being zeros it’s likely this would be a more proper specification. Table 8.25Table
8.25below details the results for the new PMT estimate scenario where 30 zero count locations
were inserted into the model training data. On an aggregate basis, the total PMT decreases to
67% of initial estimate for the 2017/2018 estimation period, and 55% for the 2018/2019
estimation period when estimated using the XgBoost machine learning algorithm with the A/l +
Strava specification. Using the Poisson regression approach but including the simulated zeros
the estimated BMT drops to 62% of initial estimate for the 2017+2018 estimation period and
58% for the 2018+2019 estimation period. These inclusion of these zero counts significantly
reduces the total PMT estimated for the entire system.

Table 8.25: Total Pedestrian Miles Traveled Comparison with Simulated Zero Counts
Scenario

Model Type and Estimation Total Annual Bicycle Miles Percent
Specification Periods Traveled Difference
No Zero Simulated Zero
Counts Counts
Machine Learning: | 2017+2018 17,300,492 11,585,489 67%
All + Strava 2018+2019 | 18,338,312 10,040,018 55%
Regression: Lowest | 2017+2018 11,393,385 7,100,915 62%
MAPE 2018+2019 13,758,836 7,975,721 58%

Figure 8.36 below details the aggregate PMT by functional classification for both modeling
approaches (machine learning vs. regression) and shows the PMT estimate without simulated
zero counts and with those simulated zero counts. The insertion of zero counts into the machine
learning training data depress the estimated PMT for the local streets, as designed, reducing the
estimated BMT on those facilities from 9.45 million PMT to 4.99 million PMT for the
2018/2019 estimation period, a reduction of roughly 48 percent. When the zero counts are
included in the regression model approach the PMT on local streets goes from 6.86 million PMT
to 2.05 million for the 2018/2019, a change of about 70% percent. Most facility types have a
diminished PMT estimate in both periods.
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Figure 8.36: Pedestrian miles traveled estimates comparison of zero counts scenario by
bicycle facility type and functional classification

The insertion of zero counts at locations with low density and low network connectivity appear
to have the desired effect of moderating the overall PMT estimates. Figure 8.37and Figure 8.38
below shows the results of the network wide application of both model approaches and the
scenarios using counts data and counts data with simulated zeros. The left panel shows the
results of the model applied to the network with all observed data while the right panel shows the
model with simulated zero counts at low density locations. Where as in the left panel there are
no locations where zero counts are estimated (denoted by grey) while the right hand panel shows
a small number of links in far flung parts of the network with no estimated pedestrian activity.
Additionally, the simulated zero counts scenario moderates pedestrian volumes throughout the
low density areas surrounding the core of the study region, with many more links in the 1-5
AADT volume bin. In fact there no links in the No Zero Counts scenario with 1-5 pedestrian
AADT while in the Simulated Zero Counts scenario there are 2,112 links with volume in this
range for the XgBoost based model.

Aggregate measure of PMT between the two model approaches in the 2018+2019 period are
different by about 25% with the machine learning model estimating more pedestrian activity.
These differences are most stark in the core of the study region. The XgBoost model appears to
spread the activity out in the downtown area while the regression model targets the activity to a
discrete corridors. Those corridors are more pronounced in the scenarios where the zero counts
were injected into the training data. The XgBoost results do create about 800 links where the
estimate is a negative value which are then converted to a zero for the purposes of aggregation
and network visualization.
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The table below presents some summary statistics of the estimated bicycle volumes on the
14,000 links that make up the study region network and which were presented below in Figure
8.37 and Figure 8.38 via map visualization. As expected the mean estimated summary statistics
all decrease with the injection of simulated zero counts with the XgBoost model estimating a
negative values on about 800 links, which are converted to zero.

Table 8.26: Summary Statistics of Estimated Counts for Total Network Application of
Pedestrian Fusion Models

Model Scenario Estimated AADT Summary Statistics
Specification Minimum | Maximum Mean Median Std.
Dev.
All + Strava | No Zero Counts 8.62 601 69.5 49 84.1
Lowest No Zero Counts 6.86 995 52.2 37 46.8
MAPE
All + Strava | Simulated Zero 0* 578 433 26 60.2
Counts
Lowest Simulated Zero 3.06 1057 25.8 11 47
MAPE Counts

*811 links given an estimated AADT of between -2.55 & -0.0003

The regression model maximum estimate is larger than the machine learning model maximum
estimated values and exceeds the maximum range of the observed counts data.
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Figure 8.38: Regression - comparison of bicycle miles traveled scenarios — network level estimates
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8.8.4 Pedestrian Data Fusion Discussion

The above section detailed the data, estimation procedures, validation, and results of data fusion
models for pedestrian traffic volumes in the study region. The validation results for the machine
learning models showed that the XgBoost machine learning algorithm worked better than
random forest across three separate cross-validation procedures though for some volume bins in
the 8-fold and LOO cross validations random forest performed better in terms of median APE.
These validation tests also showed that including the Strava data only improved APE marginally
in the 8-fold cross validation and decreased performance marginally in the LOO cross-validation.

The All + Strava model was chosen for additional exploration comparing results of the applied
model with the regression mode. The network wide application of the data fusion models PMT
results seemed showed that Strava data increased total activity estimates, which was the opposite
effect of the inclusion of Strava data in the bicycle models where Strava data moderated the
overall estimate. However, using just the observed data in the data fusion model is likely biasing
the PMT estimate upward, due to the selection of count locations where pedestrians are expected.
To handle this bias, an approach is suggested whereby zero counts are injected into the training
data at locations where zero pedestrians would be expected. The results of this approach present
the expected outcomes, further moderating estimated pedestrian activity across the network,
especially at locations where pedestrian activity is likely to be low. Continued discussions are
necessary with potential model users about an application ready pedestrian data fusion model so
model users completely understand the advantages and limitations of using either of the models
examined in this research as tradeoffs exists.

The use of machine learning in estimating network wide pedestrian activity is novel, based on
the current status of the literature. Machine learning offers significant advantages for predicting
important quantities such as pedestrian volumes where inferential data is less important for
model users. Additionally, the selected machine learning algorithms offer powerful mechanisms
for accounting for the interaction of many complicated relationships between network variables
and are likely important tools for monitoring the system and understanding network wide
activity. These models will only improve as more data is collected and the data collected and fed
into the model estimation process. However based on the features currently being used in the
machine learning algorithms, results appear less reasonable than the regression models with
activity estimates being spread out across the network instead of being concentrated on select
corridors.

Model results would be improved with updated data for certain data elements. For instance, the
decrease in pedestrian miles traveled from the first estimation period to the second could be
because the employment data used in training and application was a single year, representing
2017 since 2018 data has yet to be released by Census Bureau, as noted above in the bicycle data
fusion model discussion section. Other data from LEHD could be harnessed, including origin-
destination information that connects worker residential locations and their place of work. A
major issue in the training feature data is the use of population data from 2011. These data were
used because of their ease of availability but more updated data from American Community
Survey could be used to better reflect the conditions when traffic counts were collected, again as
noted in the section above on bicycle data fusion. Other model estimation and application
improvements could be to evaluate the Strava data in more detail and correct places where
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potential issues are present. Transit ridership data would likely improve the models instead of
the grosser measure of transit stop access.

8.9 DATA FUSION RESULTS COMPARISON

The sections above detail data fusion models using parametric and non-parametric approaches
for three modes of travel and this section will briefly compare the results from each of those
exercises.

Table 8.27 below summarizes the r-squared, RMSE, and median absolute error for the optimal
models for each mode. Optimal models were selected based on the algorithm and specification
with the lowest absolute percent error found through various cross-validations tests performed
above. The vehicle models work best compared to the other modes with lower error across
validation tests as well as in the full model where a model is estimated on the full data set in
order to predict the not out-of-sample data. Since the regression model only did a 10-fold cross
validation these results are the most comparable across tests. Based on these tests the XgBoost
model and regression model are comparable with the regression model exhibiting lower median
APE but lower r-square values. Vehicle counts data are more numerous which helps with model
training for both modeling approaches and the functional designation provides a significant clue
to the training of models as to what bucket the volume is likely to fall into thus helping to
improve model performance. With independent estimates of VMT from the HPMS these models
can be more fully validated and show that at the network level and functional classification level
both of these modeling approaches work well. With probe data the vehicle models would likely
improve.

The bicycle models do not perform as well as the vehicle models, likely due to a much smaller
training set which makes cross validation harder. Lower overall volumes also make reported
error hard to compare with the vehicle volumes. For instance if the actual volume for a given
location were 30 bikes per day (average volume for all sites in 2018/2019 period) and the model
estimated 20 the error is 50 percent. These same issues exist for pedestrian counts. Bike and
pedestrian traffic volume have some correlation to facility type, namely off-street paths, but no
volume classification is yet defined for bike and pedestrian transportation networks and since
traffic monitoring for these modes is still in the beginning stages a full enough understanding of
how to develop such a classification scheme does not yet exist. Even though error for the bicycle
models is not extreme, though certainly higher than the vehicle models, an aim for the future of
bicycle and pedestrian data collection should be to continue collecting data in new locations to
try and meet the number of locations available in the vehicle counts (n = 250) though its likely
more sites will be needed to make the situation of low volumes overall for bike and pedestrian
workable from an error perspective.

For the bike and pedestrian models the regression approach appears superior based on the cross
validation tests. The XgBoost approach resulted in median error of 43% while the regression
approach produced only 39% error. For the pedestrian model the XgBoost model resulted in
57% error while the regression model was able to reduce the median APE to just 36 percent.
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Table 8.27: Model Diagnostic Information Summary All Modes and Select Specifications

Mode Model Performance Cross-Validation Method Full
Type Metric Internal External - 10- External - LOO | Model
Fold*
Vehicle | XgBoost R-Squared 54% 63% 67% 0.999
RMSE 6631 6131 6551 379
Median APE | NA 39% 40% 0.990
Regression | R-Squared NA 55% NA 50%
RMSE NA 7897 NA 7212
Median APE | NA 40% NA 39%
Bicycle | XgBoost R-Squared 32% 15% 19% 95%
RMSE 25.7 24.6 27.4 9.7
Median APE | NA 43% 44% 13%
Regression | R-Squared NA 35% NA 42%
RMSE NA 24.4 NA 22.7
Median APE | NA 39% NA 55%
Pedestrian | XgBoost R-Squared 36% 10% 32% 99.0%
RMSE 129.3 165.1 130.6 39.7
Median APE | NA 57% 67% 15%
Regression | R-Squared NA 71% NA 80%
RMSE NA 71.9 NA 70
Median APE | NA 36% NA 77%

8.10 DISCUSSION AND LIMITATIONS

The above section describes the data, development and application of data fusion models for
vehicle, bicycle and pedestrian travel activity. The vehicle models show significantly better
performance compared to the bicycle and pedestrian models. With additional data collected over
the next few years these models may achieve better accuracy but some challenges inherent in
bicycle and pedestrian volume data for this study area, such as low overall volumes, may
continue to limit the overall accuracy of modeled volume data.

Other data sources and training features would likely help the nonmotorized models. The
bicycle models would benefit from access to parks and trails outside the urban area while the
pedestrian models would benefit from better information on transit such as ridership. Both
bicycle and pedestrian models (and vehicle) would benefit from updated population data.
Pedestrian models may benefit from Strava’s running/walking data and both modes could benefit
from the origin and destination product. Additionally, other third party data sources currently on
the market should be evaluated to understand how they could impact model performance.

Other improvements might come from adjustment of the hyper parameters used in the model
training which were tuned with some benefit in model performance in this work but could be
explored more in any future application of these techniques.
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For network scale travel monitoring it’s not yet certain what level of confidence is necessary for
useful bicycle and pedestrian miles traveled. The next section of this report will explore the use
of these BMT and PMT measures in aggregate level crash risk analysis to see if the current
imprecision in the estimates is acceptable.
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9.0 NONMOTORIZED CRASH ANALYSIS

Crash risk for people that use nonmotorized travel is typically understood to be greater than for
motorized travel though few studies assessing risk using exposure based crash rates have been
conducted. Exposure based crash risk analyses require traffic counts and related estimates of
annual activity which are not common data for nonmotorized travel. One of the primary
objectives of this research project is to use the nonmotorized traffic count data and related
network wide traffic estimates in crash risk analysis to better document the crash risk disparities
for nonmotorized users. Additionally, this research aims to offer information for how roadway
features impact disparate crash risk at the system level, modeling features like nonmotorized
traffic volume, functional classification, and vehicle volume and their role increasing risk for
nonmotorized users. For the Bend, Oregon study area crash modeling is limited due to small
number of nonmotorized crash injuries.

A literature is presented summarizing existing literature on nonmotorized crash risk at the system
level. Additional literature is provided documenting other examples of using measures of
nonmotorized travel activity from direct demand models for crash analysis. This research adds
to the literature by offering additional information on crash risk at both an aggregate and
disaggregate level for a small urban area in Oregon.
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10.0 LITERATURE REVIEW OF NONMOTORIZED CRASHES

The literature review section below examines the past research and public agency reports that
examined nonmotorized crash risk at an aggregate system wide level. The literature review then
documents the literature that has employed direct demand modeling for nonmotorized activity
estimates to be used in crash analysis.

10.1 AGGREGATE NONMOTORIZED CRASH RISK LITERATURE
REVIEW

Only minimal research has attempted to describe the bicycle crash risk on the aggregate, system
wide level. Using data from the National Household Travel Survey for 2001, Pucher and Dijkstra
(2003) showed that fatal bicycle crash rates are 12 times higher than vehicle occupants and
pedestrians 23 times more likely to be killed in a traffic related injury crash. The authors also
found that bicycle crash rates in the U.S. are double those in Germany and three times higher
than kilometer based rates in the Netherlands. The authors are not able to compute non-fatal
injury rates due to unreliable data. Pucher and Dijkstra point out that Germany and the
Netherlands enforce much lower speed limits for vehicle traffic and also administer more
widespread implementation of turn restrictions at intersections that prioritize nonmotorized user
safety. Beck et al. (2007) used data from 2001 National Household Travel Survey and fatal
crash information from the Fatal Accident Reporting System (FARS) and non-fatal crash data
from the General Estimates System (GES) to calculate person trip crash rates for multiple modes
of travel. The researchers found that fatal crash rates for people riding bicycles were more than
double passenger vehicle rates and nonfatal injury rates for bicyclists were nearly double those of
passenger vehicle occupant rates. Pedestrian fatal injury rates were measured to be about 49%
higher than vehicle occupant fatal injury risk. McAndrews (2011) compiled travel survey data
for Stockholm, Sweden and San Francisco, CA in order to estimate travel activity for motorized
traffic, bicycle and pedestrian users. The authors concluded that based on person miles of travel
bicycle and pedestrian fatal injury rates were as much as 85% lower compared to motorized
travelers using mileage based rates but as much as four times higher using person minutes of
travel. McAndrews et al. (2013) measured travel activity in Wisconsin for all modes using an
add-on to the National Household Travel Survey and created exposure based rates for fatal
injuries and non-fatal injuries. The authors found that the relative risk of bicycle travel
compared to motor vehicle travel was 10.5 and 17.1 for fatal and non-fatal injuries respectively
using the mileage based exposure measures. For pedestrian fatal and non-fatal injury rates the
relative risk was 11 and 11.8 respectively. Mindell et al. (2012) calculate miles of travel based
fatal and injury rates for vehicle, bicycle, and pedestrians using a national household travel
survey to measure travel activity and multiple sources of crash data. They demonstrate that the
relative fatal injury risk for people who bike and walk in the UK is 10 to 11 and 13 to 16
respectively, times, higher than the fatal injury rate to of people who drive. For non-fatal injury
the relative risk per distance traveled compared to driving is 50-58 and 49-59 for biking and
walking respectively. The authors not that the bicycle injury rates are likely over estimates
because the inj8ury data over counts traffic related injuries of people biking but that the
pedestrian injury rates are likely underestimated because injury data is missing for on-road
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pedestrian injuries. Teschke et al. (2013) used a travel survey of British Columbia, Canada to
calculate fatal and injury crash rates per kilometer for automobile users and people who ride
bicycles and walk. They found that fatal crash rate for bicyclists was over two and a half times
that of automobile users and injury crash rates were nearly three and a half times higher for
people riding bicycles. For pedestrian injuries the mileage based fatal injury rate was measured
to be 7.6 times higher than vehicle fatal injury and 2.7 times for non-fatal injury. This research
relies on travel surveys for calculating travel distance which is relies on self-reported distance
which can introduce error into the travel distance measures. Additionally, travel surveys do not
typically account for recreational trips which can make up a large proportion of bicycle travel for
a given region. These two limitations may bias the previous crash rate estimates upward since
they do not fully account for the full value of the denominator.

Roll (2018) estimated bicycle fatal and non-fatal injury rates using miles traveled for the Eugene-
Springfield urban area in Oregon. The results demonstrated that for the time period examined,
bicycle fatal injury rates were three times higher than motorized fatal injury rates, and non-fatal
injury rates were 2.1 times higher.

There is some debate about whether distance based exposure measures should be used versus
time based measures. Hakkert and Brainmaister (2002) examine this debate and concluded that
deciding between distances versus time based risk depends on the issue being examined. They
point out but don’t examine fully one contradiction where increased speed can reduce time based
exposure but then inherently increase risk due to the implications of higher speed. However, it is
commonly understood that speed increases risk, especially at the upper margins of vehicle speeds
when the driver’s ability to react is further limited. Though an interesting philosophical debate,
this research will rely on distance based metrics for the crash analyses presented below.

Table 10.1 below summarizes the factor by which nonmotorized crash injury rates differ from
motorized crash injury rates, further summarizing the literature review above. This summary
shows that bicycle fatal injury rates are between 2.3 and 23 times fatal injury rates for motorized
travel with non-fatal injury rates being between 2.1 and 3.7 times higher than motorized injury
rates. Pedestrian fatal injury rates are between 1.5 and 12 times higher than motorized fatal
injury rates with non-fatal injury rates at least 2.7 times higher than motorized non-fatal injury
rates.
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Table 10.1: Summary of Crash Risk Disparity

Reference Pedestrian Bicycle Study Area
Fatal Non-Fatal Fatal Non-Fatal
Injury Injury Injury Injury
Pucher and 12 Not- 23 Not- uUsS
Dijkstra (2003) Reported Reported
Beck et al. 1.5 Not- 2.3 Not- uUsS
(2007) Reported Reported
McAndrews et | 0.15-0.28 | Not- 0.18 - 0.55 | Not- Stockholm, Sweden &
al (2011) Reported Reported | San Francisco, CA
Mindell et al. | 13-16 49-59 10-11 50-58 United Kingdom
(2012)
Teschke etal. | 7.6 2.7 [ 3.7 British Columbia
(2013)
McAndrews et | 11 11.8 10.5 17.1 Wisconsin
al (2013)
Roll (2018) Not- Not- 3.0 2.1 Eugene-Springield
Reported | Reported Oregon
10.2 DIRECT DEMAND MODELS AND CRASH RISK ANALYSIS

This section of the literature review documents the previous work estimating and deploying
direct demand models for use in nonmotorized crash risk analysis. Though less common just a
few years ago, the approach of estimating exposure using this analytic method now has a number
of examples. In 2018 the FHWA released the Guide for Scalable Risk Assessment Methods for
Pedestrians and Bicyclists (SCRAM) outlining acceptable approaches for nonmotorized crash
analysis. This guide discusses appropriate methods for assessing risk at various levels including
at the system level where estimates of bicycle and pedestrian activity can be used to generate
measures of risk for use in performance monitoring. A method for deriving exposure measures
discussed in detail includes the direct demand modeling approach.

Thomas et al. (2017) develop safety performance functions (SPFs) for three types of bicycle
crashes using volume measures from a direct demand model. Crash types include all intersection
crashes, bicyclists opposite direction, and bicyclists, angle crashes using eight years of crash
police crash data from Seattle, WA. Bicycle traffic volume data is estimated using a direct
demand model through a so-called “ball park’ method that relates short-term and automated
counter data at 46 intersections to factors correlated with bicycle activity. Vehicle traffic volume
was unavailable and functional classification was used instead. The authors employ a
Conditional Random Forest (CRF) regression analysis to uncover eligible crash predictors before
specifying an SPF using negative binomial regression. The safety performance function uses the
natural log of bicycle volume as well as estimates of annual average daily pedestrian traffic in
conjunction with intersection variables like the presence of signals, entering segment legs,
parking, lanes, and transit stops. The authors also include the amount of commercial building
space within a specified buffer. Thomas et al. (2017) find that an increase in motor vehicle
volumes as measured by the functional classification increases the risk for bicycle crashes for all
crash types. Intersections with traffic signals increased the risk of bicycle crashes as did the
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presence of parking. This research also found the presence of bicycle lane and shared markings
had a positive correlation with bicycle crashes. The authors apply the estimated SPFs using three
approaches including an unadjusted prediction of bicycle crashes, Empirical Bayes adjusted
prediction of bicycle crashes, and a Potential for Safety Improvement (Persaud et al. 1999) where
the difference between the EB expected and SPF predicted crashes is calculated. The authors
conclude that the data and methods used in the analysis offer a way for cities to prioritize
locations for further investigation and likely treatments.

Griswold et al (2018) develop and apply a direct demand pedestrian model for the purposes of
safety analysis for the California Department of Transportation. Using short-term pedestrian
counts data from 1,270 intersections on the CalTrans system, a direct demand model is estimated
using employment, population, street density, walk commute share and functional classification
as independent variables. The authors specified their model using an ordinary least squares
regression with log-transformation of many of the independent variables. Model performance
was tested by randomly splitting the data into 90 percent training and 10 percent testing
partitions. This Monte Carlo cross validation scheme was performance 300 times with the
adjusted r-squared results of 0.714. The results of the model are then applied to the entire
CalTrans network in order to provide estimates of pedestrian traffic for use in project
prioritization. No aggregate risk measures are calculated using the exposure measures.

Hasani et all (2018) use bicycle and pedestrian volume data collected at 45 intersections in San
Diego, CA to estimate a direct demand model for use in nonmotorized risk analysis. These data
are collected using video and processed by computer vision algorithm, then factored to represent
annual traffic conditions. The authors employ the activity estimates calculate risk at the
intersection level across the study area. The authors weight injuries with different severities by
using a cost of injuries method that gives higher weight to more severe injuries. This research
concludes by offering priority locations for intervention based on their proposed methodology
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11.0 CRASH DATA DESCRIPTIVES

This section summarizes the crash injuries for motorized, bicycle, and pedestrian crash
participants in the Bend, Oregon urban area, the area under examination in this research. The
crash injury data are derived from the official Oregon Department of Transportation Crash Data
System (CDS) and include all injuries reported to the agency. It’s possible the crash injuries for
nonmotorized participants are not fully reported since research in cities outside of Oregon have
demonstrated a systematic underreporting of these kinds of crashes (Shinar et al 2018; Winters &
Branion-Calles 2017; Langley et al 2003). Nevertheless, the ODOT CDS is the most
comprehensive and high quality database of crash injury available for this research.

Injury severity codes are defined in Table 11.1 below and include fatal, severe, moderate and
minor injuries categorized into the KABC index. The figure below summarizes the annual
number of injuries by injury severity for each of three modes of travel including motorized,
pedestrian, and bicycle.

Table 11.1: Injury Severity Description

Code Short Long Description
Description
K Fatal Fatality information includes motor vehicle traffic crashes that

result in the death of an occupant of a vehicle or a non-motorist
within 30 days of the crash.

A Incapacitated/ | Any injury to the driver of the identified UNIT that prevents the
Severe Injury | injured party from walking, driving, or normally continuing the
activities he or she was capable of performing before the injury
occurred. Examples include broken or distorted limbs, skull or
chest injuries, abdominal injuries, unconscious at or when taken
from the crash scene, unable to leave crash scene without
assistance, etc.

B Visible Injury | Check this box to indicate any injury to the driver of the
identified UNIT which is evident to observers at the scene of
the crash. Examples include a visible lump, abrasions, cuts,
bruises, minor lacerations, etc.

C Complaint of | Any injury claimed by the driver of the identified UNIT.

Pain Examples include momentary unconsciousness, complaint of
pain, limping, nausea, etc.

Motorized transport includes passenger car, heavy and light duty truck, and motorcycle. Figure
11.1 shows that for both motorized and nonmotorized travel, fatal injuries are relatively
infrequent compared to severe and all injuries but generally consistent from one year to the next,
especially for nonmotorized injuries.
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Figure 11.1: Injuries by travel mode and year in Bend urban area

Figure 11.2 below summarizes the average annual injury count for each mode, severity and
aggregation period. Three aggregation periods are shown including periods that include the
years 2014 through 2018 (2014+2018) 2013 through 2017 (2013+2017) and 2007 through 2012
(2007+2012). The first two periods, 2014+2018 and 2013+2019 will be used later in this report
as injury data for crash rate calculation. The third period, 2007+2012, is used as a reference to
compare the other two periods to assess stability of annual average injury counts.
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Figure 11.2: Average annual injuries by mode, and aggregation period

Figure 11.2 shows that annual average bicycle and pedestrian injury counts are relatively stable
for most severity categories. There are 0.2 fatal bicycle injuries per year in the latter study
periods, lower than the reference aggregation period. Average annual pedestrian fatal injuries
are consistent in each aggregation period with around one of these injuries on average each year.
Average annual severe injuries are also consistent from year to year with around 1.5 bicycle
incidents per year and two pedestrian severe injuries per year for the 2014+2018 and 2013+2017
aggregation periods, similar to the reference period. A similar story is true for all injuries where
on average for the 2014+2018 and 2013+2017 aggregation periods there are about 20 bicycle
injuries and 10 pedestrian injuries which is similar to the reference aggregation period. Though
it’s true the bicycle and pedestrian injuries have been relatively consistent each year the total
motorized injuries have increased in the latter two aggregation periods compared to the reference
period while the fatal injuries are slightly down and severe injuries exhibiting little change across
aggregation periods.

For additional review of these traffic injury data Table 11.2 is presented below along with
information about the activity period in which the aggregation periods will be used for crash rate
estimation in Chapter Five. Since 2018 is the latest available data but bicycle and pedestrian
activity were estimated using counts data from 2019, there is imperfect alignment in these data.
However, since bicycle and pedestrian injury counts are relatively consistent from year to year
and five year averages are being used in the rate calculation, this approach should accurately
represent the injury conditions during the activity estimation periods.
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Table 11.2: Average Annual Injuries by Mode, Year, and Aggregation Period

Mode Injury Severity Average Standard | Crash | Associated Activity
Injury Count | Deviation | Years | Estimation Period

All Modes | Fatal Injury (K) 3.2 1.8 2013- | NA
Severe Injury (A) | 22.4 5.9 2017
All Injury (KABC) | 603.4 158.4

Motorized | Fatal Injury (K) 2 0.7 2017
Severe Injury (A) 18.6 5.4
All Injury (KABC) | 572.8 156.2

Bicycle | Fatal Injury (K) 0.2 0.4 2017+2018

Severe Injury (A) 1.6 0.5
All Injury (KABC) | 20.4 3.8

Pedestrian | Fatal Injury (K) 1 1.2
Severe Injury (A) 2.2 1.1
All Injury (KABC) | 10.2 2.2

All Modes | Fatal Injury (K) 4.2 1.6 2014- | NA
Severe Injury (A) | 22.8 5.8 2018
All Injury (KABC) | 670.8 105.7

Motorized | Fatal Injury (K) 2.8 1.3 2018
Severe Injury (A) 19.6 5.0
All Injury (KABC) | 639.2 103.9

Bicycle | Fatal Injury (K) 0.2 0.4 2017+2019

Severe Injury (A) 1.4 0.5
All Injury (KABC) | 20.2 3.9

Pedestrian | Fatal Injury (K) 1.2 1.1
Severe Injury (A) 1.8 1.1
All Injury (KABC) | 11.4 2.9

These average annual injuries counts are further disaggregated by functional classification and
featured below in Figure 11.3. Because of the low fatal injury counts for bicycle and pedestrian
injuries, further disaggregation by functional classification reveals some facilities have zero
average annual injuries for these modes. Annual average bicycle and pedestrian severe injuries
are generally higher on minor and major arterials with similar trends for all injuries where the
annual average injury count is four to five times higher than local and collector streets. There is
a similarly low number of fatal motorized injuries which makes the disaggregation by functional
classification produce low numbers though major arterials have consistently higher average
annual fatal injuries. Severe injuries for motorized users also are higher for major and minor
arterials with similar results shown for all injuries.

Higher injury counts for motorized users would be expected on arterials considering these
facilities move more vehicle and higher speeds. It’s also not surprising that these facility types
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are locations with higher nonmotorized injury counts considering the literature review has
documented these facility types typically presenting higher risk for nonmotorized users.
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Figure 11.3: Average annual injuries by mode, aggregation period and functional
classification

This section summarized the traffic injuries in the study area comparing two aggregation periods
with a reference period in order to show stability in injuries across periods. Showing stability is
important to prevent any perception of cherry picking injury data that is not representative of
longer term conditions. Based on this review the motorized crash injuries in the 2013+2017 and
2014+2018 periods are higher than the reference period while the nonmotorized crash injuries
are slightly down.
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12.0 AGGREGATE CRASH RATE ANALYSIS

This section computes and reports injury rates for bicycle, pedestrian and motorized transport in
the study area. These rates will be calculated using the bicycle and pedestrian activity estimates
from the earlier modeling section using the equation below:

Injury Count soperity

Injury Rateseverity = 375700 of Travel,,,q4,

(12-1)
Where:

Injury Rategeperic, = Annual average injury rate for severity category K, A, B, and C

Injury Countgeyerir, = Annual average injury count for severity category K, A, B,
and/or C

Miles of Travel,,,q. = Annual miles of travel for each mode including motorized,
bicycle, and pedestrian

These rates are expressed in injuries per 100 million miles of travel, a common standard when
reporting (NHTSA 2018).

12.1 REGIONAL TRAFFIC INJURY RATES

This section will summarize the traffic injuries for each mode of travel where crash data and
estimates of travel activity are available including motorized, bicycle and pedestrian traffic.
Motorized traffic estimates are derived from the Highway Monitoring Performance System
(HPMS) while the bicycle and pedestrian traffic are derived from two modeling approaches
including a machine learning algorithm and a regression approach. In addition to the two
modeling approaches, the bicycle and pedestrian travel activity estimates also have a scenario in
which zero counts data were injected into the observed data at sites in low density, low
connectivity areas of the study region in an attempt to moderate the overall modeling estimates.
This was done because it is likely that many places in these parts of the network do not have
bicycle or pedestrian traffic but because the structure of the counts program nonmotorized traffic
are not collected in these areas and so no zero traffic observations are actually collected. Rates
are calculated using estimates from each approach and scenario to see how rates vary and
measure certainty in the injury disparity between modes.

Figure 12.1 below summarizes the injury crash rates for each injury severity, for each mode,
modeling approach and zero counts inclusion scenario for just the 2017+2018 estimation period.
The two modeling approaches produce estimates of nonmotorized travel that differ enough to
impact the injury crash rates but do not typically change the outcome that nonmotorized injury
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rates are significantly higher than motorized injury rates. Only in the pedestrian All Injury rate
does the rate switch from being higher than the motorized crash rate to lower. In all other results
nonmotorized injury rates are higher than motorized injury rates. The scenarios defined as No
Zero Counts are lower than results for scenarios defined as Simulated Zero Counts because the
former scenario has higher overall estimates of nonmotorized travel activity. These would likely
represent an over estimate of bicycle and pedestrian activity and so with a larger denominator the
crash rates decrease relative to other scenarios. The rates from these scenarios should be
considered conservative and the true rate is probably somewhere in the middle between the two
scenarios. However, for the purposes of the remaining results the No Zero Counts scenario will
be used since the objective of this chapter is to demonstrate the disparity in injury risk between
travel modes so using the most conservative estimate of nonmotorized traffic hopefully reduces
uncertainty in the final conclusions regarding disparity in crash risk between modes.

Regional Crash Injury Rate by Mode and Scenario
Bend Urban Area
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Figure 12.1: Regional crash injury rate by mode and scenario (2017+2018 estimation
period)

The chart in Figure 12.2 shows the No Zero Count scenario still showing crash rates calculated
using both modeling approaches XgBoost and Regression) for estimating bicycle and pedestrian
travel activity but includes both the 2017+2018 and 2018+2019 estimation periods to give a
sense of the stability in the rates from period to period. Because estimates of nonmotorized
travel decrease from the 2017+2018 period to the 2018+2019 period for most of the modeling
approaches the rates are generally higher in the latter period. Rates for both periods are
generally many times higher for the nonmotorized users compared to the motorized users. For
instance, in the 2017+2018 period the bicycle fatal injury rate is about 9 times higher (0.4 for
MYV compared to 3.8 for bicycle) than the motorized injury rate while the pedestrian fatal injury
rate is 12 times higher (0.45 for MV compared to 5.5 for pedestrian). For severe injury rates
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bicycle users face risk 10 times higher (3.1 for MV compared to 30.6 for bicycle) than motorized
users while the pedestrian severe injury rate is about 4 times greater (3.1 for MV and 12 for
pedestrian) than motorized crash risk. The total injury rate for bicycle users is about 4 times
higher (101.9 for MV compared to 390.3 for bicycle) while the pedestrian total injury risk is
lower than the motorized total injury rate by about 38 percent (89.5 for MV compared to 55.6 for
pedestrian. The described crash rates between nonmotorized users and motorized users are the
most conservatively derived rates and should be considered a floor for rate comparison but rates
may actually be higher for nonmotorized users and thus, disparities greater.

Regional Crash Injury Rate by Mode and Year
Bend Urban Area
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Figure 12.2: Regional crash injury rate by mode and year

Since the rates using the machine learning (XgBoost) modeling approach are generally lower
than the rates using activity estimates from the regression approach these results will be used
below to highlight the nonmotorized risk by functional classification. Comparisons will be made
for each functional classification and injury severity for each mode. In Figure 12.3, fatal and
severe injuries have been combined to simplify the number of panels shown and to reduce
problems of small injury counts when disaggregated by functional classification.
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Crash Injury Rate by Mode and Functional Classification
Bend Urban Area
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Figure 12.3: Crash injury rate by mode and functional classification

The above figure shows that risk increases for all users when vehicle traffic and speed increase
with higher functional classification, i.e. local streets have lower injury rates compared to
collectors streets, which in turn are lower than the two arterial classifications. Injury rates are
relatively stable from one estimation period to another, especially for motorized injury rates
where no change is detected on some functional classifications. Significant disparities between
nonmotorized and motorized injury rates exist for almost all functional classifications with the
worst disparities existing on arterials for bicycle users. Disparities on these facilities for fatal
and severe injuries are 35 to 99 times higher for bicycle users compared to motorized users. For
pedestrians the fatal and severe injury rate disparity is 17 to 75 times higher compared to
motorized users. On some functional classifications the nonmotorized injury rates are lower
including on local streets for both bicycle and pedestrian users and on collectors for just
pedestrian users.

The last chart featured in Figure 12.4 shows similar information to Figure 12.3 but now only
shows the nonmotorized crash injury rates in order to highlight the disparate risk across
functional classification. Local and collector streets has much lower risk than arterial roads. In
the case of all injury (KABC) rates for bicycle users, major arterials present about five times
greater risk compared to collector streets at least 68 times greater risk compared to local streets.
For pedestrian users, the total injury rates are also at least five times higher on major arterials
compared to collectors and at least 42 times higher compared to local streets. If injury rates from
less conservative estimates of nonmotorized travel activity were used these disparities would be
even larger.
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Nonmotorized Crash Injury Rate by Functional Classification and Year
Bend Urban Area
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Figure 12.4: Nonmotorized traffic injury rate by mode and scenario

12.1.1Regional Traffic Injury Rates Discussion

This section summarized crash injury rates for motorized and nonmotorized users using available
miles of travel data from official HPMS sources and a novel approach to estimating
nonmotorized activity. The results confirm past research that has demonstrated disparities in
crash injury risk between user types, with bicycles facing significantly more risk for all injury
severities compared to motorized users. Pedestrian crash injury risk is higher for fatal and severe
injuries but about the same when compared to total crash injury rates for motorized users. Crash
risk is relatively stable across estimation periods. Nonmotorized crash injury rates are not
homogenous across the system and increase as the functional classification changes from streets
with lower vehicle volumes and lower travel speeds. The next section will perform statistical
modeling using the network wide estimates of nonmotorized traffic activity to determine what
other factors are associated with increased crash injury risk for nonmotorized users.
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13.0 CRASH MODELING

This section will use the available estimates of nonmotorized activity at the network level to
perform relatively simple crash injury modeling to further understand factors associated with
injuries and injury risk. Statistical crash models are recommended when data is available at the
link level which the activity modeling performed in the above chapters provides for these
purposes. Even though this research has measures of activity across the network and a fully
attributed network for certain data elements, the number of observed injuries is so low that model
stability is an issue, especially for the pedestrian crash models. Because of this only one segment
model for both bicycle and pedestrian injury is presented, representing the best attempt to apply
statistical methods to modeling the crash injuries. Guidance is issued in the discussion section
about how to improve the functionality and confidence in these models.

13.1 BICYCLE CRASH MODELING

Crash data for the bicycle crash modeling includes all crash injuries recorded between 2014 and
2018 which occurred on the on-street network where estimates of bicycle activity are available
within the Bend MPO study area. The nonmotorized activity represents average values for both
estimation periods as since the crash data represents multiple years it was thought that a general
representation of the bicycle activity across years was sensible. In Table 13.1 below the bicycle
injury counts are summarized by functional classification and presence of bicycle lane.

Table 13.1: Bicycle Injuries by Functional Classification 2014-2018

Functional Classification Bicycle Injury Count
Bike Lane No Bike Lane Total
Local 1 28 29
Collector 6 8 14
Minor Arterial 26 4 30
Major Arterial 27 0 27
Total 60 40 100

Figure 13.1 below shows the spatial distribution of the bicycle injuries. From the map of injury
locations it’s observable that many injuries occur on or near arterials that transect the study area
showing spatially what the table shows in tabular format.
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Figure 13.1: Bicycle injury locations for years 2014 to 2018

These data are combined into a statistical model to better understand the role that functional
classification and presence of bicycle lane play in predicting bicycle crash injury while
controlling for the effect of differences in bicycle traffic. These statistical models are commonly
referred to as Safety Performance Functions (SPFs) and typically use a negative binomial
regression model specification because the crash data distribution feature over dispersion, a
condition when the variance exceeds the mean (HSM 2010). However, for the bicycle crash
model data over dispersion is not detected, likely because the entire network is being used and
the vast majority of link segments have not experienced a bicycle injury crash within the analysis
timeframe resulting in excessive number of zeros. This condition requires the use of a hurdle
regression model or zero-inflated regression model which combines a truncated Poisson model
with a logit model. The Poisson element of the hurdle model estimates the non-zero values
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while the logit model estimates the zero values. The probability distribution can be described as
follows:

. . i+ (1—-m;) exp(—u;) if j=0
Pr(yl=])= it( ly)i p(—ui) : 1

uylexp(-pp) if j>0

(1—"1')},—[,!

(12-2)
Where:
yi1s the number of injuries
i 1s the logistic link function for predicting the links with zero injuries

A few model specifications in the zero inflated regression model using covariates such as posted
speed, estimated vehicle volume, presence of bicycle facility, and functional classification to
predict bicycle injuries. Other treatment measures would be ideal but the kinds of treatments
currently installed in the study area is limited and other treatments are not currently tracked in
the available network data.

The table below summarizes a zero inflated regression model where the non-zero bicycle injury
segments are a function of bicycle AADT, roadway length, and the presence of a bicycle lane
while the zero bicycle injury segments are a function of functional classification. These results
show that as bicycle AADT increases bicycle injury counts, as would be expected. Length and
lack of bike lane is also positively correlated with bike injuries though the presence of bike lane
variable is not significant at the 0.10 level.

Table 13.2: Bicycle Injury Model — Zero-Inflated Regression

Parameter Regression Based Bike XgBoost Based Bike Based
AADT Estimates AADT Estimates
Estimate | Standard | P- |Estimate| Standard | P-value
Error |value Error
(Intercept) -4.7455103 {0.709924 [0.00 |[-5.16503 {0.7377129 {0.00
log(Bike AADT ) 0.7861149 {0.1610009{0.00 [0.89128 [0.1675135 |0.00
Roadway Length (ft.) 0.0008817 {0.0002889(0.00 [0.000756 {0.0002986 [0.01
No Bicycle Facility 0.366269 [0.3431637{0.29 [0.090931 |{0.3371497 |0.79
(Reference Bike Lane)
Zero-inflation model coefficients (binomial with logit link):
Estimate | Standard | P- |Estimate| Standard | P-value
Error |value Error
(Intercept) 3.9774 0.4013 0.00 |3.7072 10.3957 <2e-16
Collector Street (Refernce |-1.4515 0.4191 0.00 |-1.0656 |0.4224 0.01
Local)
Arterial Street -2.2725 0.4193 0.00 |-2.0065 |0.4033 0.00

145



Parameter result tables can often be better interpreted when applied through a sensitivity test
holding some covariates constant while altering others to see how the model responds with new
data. Figure 13.2 below shows the results of applying the model in a sensitivity test holding
segment length constant but varying bicycle AADT and functional classification. Also, instead
of showing predicted crash count the chart below shows the crash rate or risk to show how the
bicycle injury risk decreases across the varying covariates. For instance the sensitivity test
below shows bicycle injury crash risk is mitigated by the presence of a bicycle lane by 23%, or
that the presence of a bicycle lane reduces crash risk by 22 percent, all else being equal.
Functional classification, a proxy measure for vehicle speed and volume, increase bicycle crash
injury risk as functional classification increases. For instance, local streets present 90% less
injury risk compared to arterials, with collectors decreasing risk by 69 percent. These findings
align with the injury rates presented in the above chapter. Additionally, this model and the
accompanying sensitive test demonstrates that the safety in numbers effect is at work in the study
region. Crash risk decreases as the number of daily bicycle riders on a given corridor increases.
For instance, as the daily average (AADT) bicycle traffic increases from a 25 AADT to 100
AADT, the crash risk decreases by 21 percent. Increasing bicycle AADT from 10 AADT to the
maximum observed bicycle AADT of 390 bicycle injury crash risk decreases by 38 percent.

Segment Level Bicycle Crash Injury Model
XgBoost Based Bike AADT

0.125
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Local
— Collector
Arterial
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Injury Rate
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300 400
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Bicycle AADT

Figure 13.2: Bicycle injury crash model sensitivity test for segments

13.1.1Bicycle Crash Modeling Discussion

The above section estimates a bicycle injury crash model using segment level analysis in the
Bend study area. Though the bicycle crash injury data is sparse, the model affirms the aggregate
crash risk results presented in an earlier chapter, showing that crash risk for bicycle users is
higher on arterial streets compared to collector streets. The model tested the effect of the
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presence of a bike lane, showing that the presence of bike lanes decreased bicycle injury risk,
though the variable in the zero inflated regression model was not statistically significant.

13.2 PEDESTRIAN CRASH MODELING

Crash data for the pedestrian injury modeling includes all crash injuries recorded between 2014
and 2018 which occurred on the on-street network where estimates of bicycle activity are
available within the Bend MPO study area. The nonmotorized activity represents average values
for both estimation periods since the crash data represents multiple years it was though that a
general representation of the pedestrian activity across years was sensible. In Table 13.3 below
the pedestrian injury counts are summarized by functional. Information

Table 13.3: Pedestrian Injuries by Functional Classification 2014-2018

Functional Classification Pedestrian Injury Count
Collector 7
Local 7
Major Arterial 22
Minor Arterial 21
Total 57

Figure 13.1 below shows the spatial distribution of the pedestrian injuries. From the map of
injury locations it’s observable that many injuries occur on or near arterials that transect the
study area showing spatially what the table shows in tabular format. As presented in the table, a
majority of pedestrian injuries occur on arterials. These facilities typically have higher vehicle
speeds and volume.
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Figure 13.3: Bicycle injury locations for years 2014 to 2018

Because the distribution of the pedestrian injuries follows a different negative binomial form an
alternative model specification was used to estimate the pedestrian injury model. The results of
the negative binomial regression model for estimating pedestrian injuries in below in Table 13.4.
The results show that there is a significant positive relationship between pedestrian injuries and
pedestrian traffic volumes, as would be expected. The other covariate in the model includes
vehicle volume, which is also correlated with an increase in pedestrian injuries. Both of these
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variables are significant at the 0.05 level. Other variables such as segment distance were tried
but models were unstable. The low number of pedestrian injury counts makes estimating
pedestrian injury models using only a single urban area difficult.

Table 13.4: Pedestrian Injury Model — Zero-Inflated Regression

Parameter Regression Based Pedestrian XgBoost Based Pedestrian

AADT Estimates Based AADT Estimates

Estimate | Standard | P-value | Estimate | Standard | P-value

Error Error

(Intercept) -9.41777 0.65253 <2e-16 | -8.53464 | 0.51308 <2e-16
log(Ped_AADT Rg) | 0.97517 0.17693 0.00 0.89242 | 0.14380 0.00
Estimated Vehicle | 0.000092 | 0.00003 0.00 0.000102 | 0.00002 0.00

AADT

Parameter result tables can often be better interpreted when applied through a sensitivity test
holding some covariates constant while altering others to see how the model responds with new
data. Figure 13.4Figure 13.2 below shows the results of applying the model in a sensitivity test
holding segment length constant but varying pedestrian AADT and functional classification.
Also, instead of showing predicted crash count the chart below shows the crash rate or risk to
show how the pedestrian injury risk decreases across the varying covariates. For instance the
sensitivity test below shows pedestrian injury crash decreases as pedestrian volume increases.
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Figure 13.4: Pedestrian injury crash model sensitivity test for segments

More specifically, if pedestrian volume increases from 25 to 100 pedestrians per day the risk
decreases by nearly 9% while going from 25 to the maximum observed 800 pedestrian AADT
the injury risk drops by 35 percent, all else being equal. The figure shows how increased vehicle
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volumes increase pedestrian crash risk. When the vehicle volume increases from 1000 AADT to
20,000 AADT the pedestrian crash risk increases by 83 percent, all else being equal.

13.2.1Pedestrian Crash Modeling Discussion

The above section constructs a simplistic pedestrian crash injury model using estimates of
pedestrian volume from an earlier chapter and available pedestrian crash injury data, which is
quite sparse. Using a small set of covariates, the model highlighting the role that vehicle volume
and pedestrian volume play in predicting crash risk demonstrating that vehicle volume increases
pedestrian crash injury risk and increasing pedestrian traffic decreases pedestrian crash risk.
Important covariates like pedestrian safety treatments were not tested because the network data
used in this analysis was not attributed with those features. Future work should develop those
data so that the impacts on crash risk can be captured in the models. However, because of small
sample size, it’s likely that the current study area would need to be combined with data from
other regions in order to make the models more reliable.

13.3 CRASH MODELING DISCUSSION

The chapter above on crash modeling demonstrates that simplistic crash injury models for
nonmotorized users can be developed and generate useful insights on local conditions. Though
many of the risk factors used in the model like vehicle volume have been documented elsewhere,
confirming the existence of and magnitude of the effect is important to help align local decision
makers understanding of the role vehicle traffic play in nonmotorized injury outcomes.

13.4 DISCUSSION

Using estimates of bicycle and pedestrian activity form direct demand models is becoming a
more common approach to quantifying traffic volumes for nonmotorized users across the system.
At the aggregate level such as functional classification these estimates of activity likely reduce
error compared to the link level estimates. With more traffic count data and some additional
tuning of the direct demand models these estimates could be further refined but currently provide
useful information in crash risk analysis.

The results presented in this research demonstrate what past research has shown, the major crash
injury risk disparities exist currently on the system in the study area. The risk is not homogenous
across the system and streets with higher vehicle traffic volumes and speed significantly increase
crash risk for nonmotorized users. Risk appears to be further mitigated by design, with the
bicycle crash model demonstrating risk reduction on facilities with bicycle lanes. Further, just
having the presence of more nonmotorized users can reduce risk, likely utilizing the safety in
number effect. Though limited in scope, this research show that for states and cities interested in
getting more people to use the nonmotorized to bike and walk, interventions exist that will make
people feel safer and deliver objective reduction in risk.

This research was not able to examine other treatment types but research summarized in DiGioia
et al. (2017) found many common treatments exist that reduce risk for users.
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Figure 13.5: Summary of risk ratios for bicycle infrastructure treatments from DiGioia et
al. (2017)

For pedestrian crash injury many treatments have been documented to reduce crash frequency
and overall risk. The National Cooperative Highway Research Program released a guide to
performing systemic pedestrian crash analysis and compiled treatment options and associated
crash reduction factors (NCHRP 2018). Treatments can range from low cost and easy to install
to relatively more complicated interventions but these treatments have been demonstrated to
reduce pedestrian injury crash outcomes including risk.

Taken together it should not be concluded that nonmotorized injury outcomes are inevitable and
somehow poor behavior alone is responsible for these injury outcomes. Injuries for
nonmotorists, like all crash injuries, are preventable and urban areas that lack facilities with
evidence based treatment options will likely struggle to attract more users due to the existence of
high risk conditions. The Oregon Department of Transportation formerly recognizes the risk
many of the system elements analyzed in this research present to nonmotorized users. Bergh et
al. (2015) reviewed the process developed for the agency using Oregon data to establish risk
factors for people that walk and bicycle concluding that in addition to vehicle volumes and
posted speed limit, the presence of traffic signals, number of lanes, lack of a bicycle facility and
driveway density also increased risk for these users. The authors also note that presence of mid-
block pedestrian crossing and transit stops increased crash risk for pedestrians highlighting the
need for nonmotorized exposure data since it’s likely the safety issue with these factors is
actually the presence of more nonmotorized users, not the features themselves.
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In addition to nonmotorized crash injuries being avoidable through design, active transportation
benefits to population health outweigh the costs associated with injuries and air pollution. These
benefits have been well documented In Mueller et al. (2015) where 30 studies looking at the
health impact of shifting driving trips to walking and bicycle trips finding that in 27 of those
studies the benefits of increased physical activity outweighed the increased risks of traffic safety
and air pollution exposure. In a another study of over 250,000 people in the United Kingdom,
researchers followed participants for up to five years and found that people who bicycled or
bicycled and walked to work had lower risks of cardiovascular disease and cancer (Celis-
Morales et al. 2017). Under current conditions, these health benefits however, will never be
fully realized when potential nonmotorized road users experience the elevated crash risk
documented in this and other studies. System managers at the state and local level have a
significant role to play to build a complete system that allow users the freedom of movement by
for the mode they choose. This freedom is currently limited by the outsized risk nonmotorized
users’ face on Bend’s roadways.
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APPENDIX A:DATA DICTIONARY






Table A.1: Deployment Information

Field Name Data Description
Format
Location_Id numeric Unique Identifier for count locations locations (parent 'site')
Sub_Location_Id | numeric Unique identifer describing the sub location of the count
Deployment Date | character | Deployment date of device
Deployment Tim | time hms | Deployment time of device
e
Equipment Id | character | Serial number for hardware device
Collection_Type | character | Data collection type (e.g. Roadway, sidewalk, Combo, etc.)
Photo_Url character | A URL link for photo(s) of the deployment
Device_Name character | Serial Number of device. Used to link with automatically
transmitted data)
Pickup_Date character | Date when device was picked up
Pickup_Time time hms | Time when device was picked up
Comments character
Email character
Edit_Url character
Time Stamp character | Time stamp of when the record was created
Description character | Description of device deployment

Latest version of the code links directly to Google Sheets bi-passing the need to export the file
and store it on a network.

See Diagram for Data Collection graphic



Table A.2: Count Location Information

Field Name Data Description
Format
Location_Id integer Unique Identifier for count locations locations (parent
'site")
Sub_Location_Id character | Unique identifier for sites at location, e.g. sidewalk,
bike lane, roadway. See Diagram tab
Vendor_Site_Id character | Identifier assigned by device vendor. Used to link
spatial data location to counts data. Only used for
permanent locations.
Collection_Type character | Data collection method, mobile vs. permanent (see
Collection Type Code)
Collection_Type Desc | character | Data collection method, mobile vs. permanent (see
Collection Type Code)
Facility_Type numeric Value indicating the facility in which data collection
occurred (See Facility Type Code)
Facility_Type_Desc character | Descriptive indicating the facility in which data
collection occurred (See Facility Type Code)
Double_Count_Location | numeric Value indicating if two devices required to collect at
site. For mobile collection only
Is_Oneway numeric Value indicating if site is a one-way travel direction
Oneway_ Direction character | Direction in which oneway travel is directed
Latitude numeric Latitude of site
Longitude numeric Longitude of site
Site_Name character | Name of Sub_Location
Location_Description | character | Unique name for location
Visualize numeric Flag for data visualization. Applies to parent site only
User_Type character | User type collected (See User Type code tab)
User_Type_Desc character | User type collected (See User Type code tab)
Device_Type character | Equipment type setup (see Device Type tab)
Direction numeric Code to establish travel direction of traffic
Post_Needed numeric Indication of whether a post is needed to hang
collection device
Install_Instructions character | Information for vendor regarding how to install
collection devices
Vendor_Channel _Id numeric Unique value for permanent sites that link spatial data
to counts data. Only Used for permanent locations.
ImageFilePath character | Relative file path for a picture of the count site
User_Updated character | Initials of GIS user updating the record last
Street Furniture character | Description of street furniture, temporary post, or tree

used to anchor the hardware




Table A.3: Processed Count Data

Field Name Data Description
Format
Location_Id character |Unique Identifier for count locations (parent 'site")
Sub_Location_Id character |Unique identifier for sites at location, e.g. sidewalk, bike
lane, roadway. See Diagram tab
Date date Date when count was recorded
Direction character |Direction of travel for counts
User_Type Desc character |User type collected (See User Type code tab)
Facility_Type numeric |Code indicating the facility in which data collection
occurred (See Facility Type Code)
Counts numeric |Traffic count
Obs_Hours numeric |Number of hours of collected data
Weekday character |Day of Week
Is_Weekday character |Descriptive of weekday vs. weekend
Month character |Month of Year
Year numeric |Calendar Year
Device_ Type Desc |character |Description of device type collecting data. Only available
and Sub Location Id level since Location Id and Link Id
level aggregates Sub Location data of whiohc multiple
devices types may have been used
Is_Holiday character |TRUE or FALSE value depending on whether date falls on
the following federal US holidays(New Years Day,
Inauguration Day,ML Kings Birthday,Memorial
Day,Independence Day,Labor Day
Veterans Day, Thanksgiving Day,ChristmasDay)
Potential Special Event|logical |TRUE or FALSE value based on grouping analysis of all
counts sites where clusters of higher than expected counts
by day are used to inform potnetial days where special
events took place that may increase the traffic volumes
Error_Code numeric |Value assigned to daily counts that indicates any error in
that record. See Error Codes tab for full description.
Ub_Conf_Bound numeric |Upper level threshold value assigned to record to perform
error flagging and understand if daily observation is within
an acceptable range
Lb_Conf_Bound numeric |Lower level threshold value assigned to record to perform
error flagging and understand if daily observation is within
an acceptable range
Est_Split logical |TRUE or FALSE value based on whether the count was
estimated from user only counts using an assumed split
factor
Index numeric |Index value is used to keep track of records in the error

flagging process and do not persist across data process
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Table B.1: Hyper parater Summary

Mode Algorithm Algorithm Year Split (Boosting(Maximum|Learning|Gamma|Subsample|Minimum|Subsample
Specification Variable| Rounds | Depth Rate Ratio of | Child Ratio
Count Columns | Weight
Vehicle |Federal Fc |Random Forest |2017 6 NA NA NA NA NA NA NA
Federal Fc  |[Random Forest |2018 6 NA NA NA NA NA NA NA
Local Fc Random Forest |2017 6 NA NA NA NA NA NA NA
Local Fc Random Forest |2018 6 NA NA NA NA NA NA NA
Federal Fc  (XgBoost 2017 NA 100 8 0.075 0 0.5 2.5 1
Federal Fc | XgBoost 2018 NA 75 6 0.075 0 0.5 2 1
Local Fc XgBoost 2017 NA 100 8 0.075 0 0.5 2 1
Local Fc XgBoost 2018 NA 75 6 0.1 0 0.5 2 1
Bicycle [Spec Algorithm 2017+2018 |2 NA NA NA NA NA NA NA
All + Strava |[RandomForest |2018+2019 (2 NA NA NA NA NA NA NA
All + Strava |[RandomForest |2017+2018 (2 NA NA NA NA NA NA NA
All RandomForest |2018+2019 |2 NA NA NA NA NA NA NA
All RandomForest [2017+2018 [NA 50 7 0.05 0 0.3 2.25 1
All + Strava |XgbTree 2018+2019 |NA 50 8 0.05 0 0.4 2 1
All + Strava |XgbTree 2017+2018 |NA 50 7 0.05 0 0.3 2.5 1
All XgbTree 2018+2019 |NA 50 6 0.05 0 0.3 2 1
Pedestrian |All + Strava |RandomForest |2017+2018 |2 NA NA NA NA NA NA NA
All + Strava |[RandomForest |2018+2019 (2 NA NA NA NA NA NA NA
All RandomForest |2017+2018 |2 NA NA NA NA NA NA NA
All RandomForest |2018+2019 |2 NA NA NA NA NA NA NA
All + Strava |XgbTree 2017+2018 |NA 50 6 0.05 0 0.5 2 1
All + Strava | XgbTree 2018+2019 |NA 50 7 0.075 0 0.4 2 1
All XgbTree 2017+2018 |NA 50 7 0.05 0 0.3 2 1
All XgbTree 2018+2019 |NA 50 8 0.05 0 0.3 2 1

B-1



